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Abstract

Multimedia PCs run a diverse mix of multimedia, interactive, and batch applica-

tions. To better support the variety of real-time requirements generated by this

application mix, multimedia PCs are evolving from soft to firm real-time systems.

The hallmark of a firm real-time system is its ability to provide predictability to

the user and applications. Share-based CPU schedulers provide predictable CPU

service to applications by allowing fractions of the CPU to be reserved on their

behalf; if the share of an application is k, and the sum of all application shares is n,

then the application receives at least k/n of the CPU capacity. Share-based CPU

schedulers are frequently proposed for use in multimedia systems.

A challenge facing the user of a share-based CPU scheduler is to select a share

value for every application so that the application receives sufficient resources to

help the user accomplish his goals. Finding the optimal share assignment is NP-

hard, implying that many choices of application shares will be less than optimal

in practice. This thesis argues that a multimedia CPU scheduler must gracefully

handle the situation where the user is dissatisfied with an application’s performance

because its chosen share is too small. In this situation, the system should help the

user prioritize among applications, and the scheduler should shift CPU cycles to

the more important applications to help satisfy their real-time requirements.

In this dissertation we present a new CPU scheduler called Tyche. Tyche con-

sists of a share-based scheduler augmented with a novel share shifting mechanism

that assists the user in achieving his goals when the share of a multimedia or inter-

active application is too small. We derive the Tyche algorithm mathematically by

extending the theory on which many share-based schedulers are based; analyze its

real-time properties; and demonstrate that Tyche adds value for the user across a

range of multimedia and interactive workloads.
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Chapter 1

Introduction

In a position statement published in December 1996, Dr. Jack Stankovic enthusi-

astically predicted, “Almost all future computer systems will be real-time systems!

Why will most future computer systems be intimately tied to real-time comput-

ing? This will be largely due to the confluence of communications, computers, and

databases fueled by distributed multimedia.” [58] In the seven years since, multi-

media has indeed revolutionized the way that people use computers. An increasing

number of devices—cell phones, digital video cameras, set-top boxes, and PDAs,

as well as PCs—can generate, manipulate, and play digital video and audio. PC

users regularly surf Web pages containing embedded video and animations; swap

songs and videos with peer-to-peer software; attach USB cameras to hold video-

conferences; add TV tuner cards to build their own personal video recorders; and

play computer games that incorporate cinematic video clips, surround sound, and

realistic real-time graphics engines.

Traditionally, real-time systems have been equated with simply meeting all dead-

lines, but this view is somewhat narrow for discussing the future of real-time com-

puting. In a more general sense, real-time implies predictable, and a broad spectrum

of real-time systems has begun to emerge. At one end, traditional hard real-time
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systems are often safety-critical (e.g., an air traffic control system or a laser surgery

device), and typically in these systems a missed deadline can lead to a catastrophic

failure. Such systems often require extensive analysis of the set of applications to be

run, and models of the fine-grained resource requirements made by each, in order

to make assurances that all deadlines will be met in the running system. At the

other end of the spectrum, nearly all PCs are now soft real-time computer systems:

they run applications whose real-time performance matters and they supply the

user with knobs for adjusting this performance. Usually the applications that run

in a soft real-time system have not undergone thorough analysis, and the workload

is not known a priori; thus, it may not always be possible to quantify the exact

quality of service that the system is able to provide. Finally, firm real-time systems

occupy a middle ground that is becoming increasingly well-established. A firm real-

time system is “one that is committed to meet QOS requirements on contractual

terms.” [41] In other words, a firm real-time system may or may not meet more

deadlines than a soft real-time one; rather, the important distinction is that the

firm real-time system provides the user and applications with advance knowledge

about its real-time behavior by making some sort of a contract with them, and

refuses to enter into a contract that cannot be met. Firm real-time systems often

borrow approaches and techniques from hard real-time systems, such as analytic

modeling of various aspects of the system behavior, but apply these techniques to

the problems handled currently by soft real-time systems.

Attention has focused on running firm real-time systems on multimedia PCs for

a number of reasons. First and foremost, such systems support multimedia applica-

tions well. Many multimedia applications make fairly regular and predictable real-

time resource requests, and some applications may be able to adapt their resource

usage to fall within the resource contracts obtained from the system. Second, firm

real-time behavior is a form of the folk-wisdom “principle of least astonishment,”
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which, simply stated, is that a system should behave in the way that the user ex-

pects it to. In this case, the user expects that the system will live up to a resource

contract that is known in advance; this allows the user to start a new application

(if that application is able to reserve sufficient resources) without worrying that the

quality of running applications will deteriorate. Finally, predictability is a pow-

erful tool for reasoning about the system’s real-time behavior, understanding the

problems that arise, and solving them—as demonstrated in this dissertation.

1.1 Firm Real-Time Multimedia Systems

A firm real-time multimedia system running on a PC has four key components: the

user; a mix of multimedia, interactive, and batch applications that he or she runs; a

reservation-based CPU scheduling algorithm; and a resource manager that handles

reservations. The philosophy of personal computing is that these four components

should cooperate effectively to help the user accomplish his or her goals. Before

discussing the manner in which these components cooperate, we briefly describe

each.

First, the user of the PC has subjective goals and invokes a set of applications

in order to help achieve them. The user’s goals are only fully known to the user,

and may change over time. The ultimate value of the rest of the system derives

from helping the user fulfill his or her goals. Clearly, this requires that the user be

able to communicate these goals to the system in some fashion.

Second, three different categories of applications run on the system: multimedia,

interactive, and batch. This application taxonomy will be discussed in more detail

in Chapter 2, but we present a brief summary here. Multimedia applications have

fine-grained deadlines; for example, a video decoder playing video at 30 frames per

second must decode and display a new frame every 33ms. These deadlines are
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“firm”, in that a late frame provides no value. Interactive applications also have

real-time constraints, but these are “soft” because late work is still useful. For

instance, when the user moves the mouse, the cursor should change position within

about 100ms or else the user will notice the delay and become annoyed; yet the user

becomes even more annoyed if the mouse never moves. Finally, batch applications

such as compilations do not have any explicit constraints, but the user typically

desires that they finish as quickly as possible. In general, applications provide

value to the user and contribute to achieving his goals by meeting their deadlines

(multimedia and interactive) or making progress toward completion (batch).

Third, firm real-time multimedia systems typically use reservation-based CPU

schedulers to provide applications with predictable behavior across arbitrary work-

loads [39]; some recent examples of schedulers in this class are EEVDF [61], Ri-

alto [30], the Nemesis CPU scheduler [36], and SMART [45, 46]. All of these CPU

schedulers can provide applications with reservations, resource contracts for CPU

service at a specified minimum rate (often given in millions of cycles per second, or

Mcps). The CPU scheduler translates an application’s reservation into fine-grained

promises to deliver specific amounts of cycles (i.e., a timeslice) to the application by

specific times. These promises provide the application with predictable service for

meeting deadlines, and also allow resource-aware applications to predict in advance

which deadlines will be met. The important point is that the CPU scheduler deliver

an application’s reservation at a fine-grained level, allowing the application to meet

its deadlines and, ultimately, to provide value to the user.

Fourth, a resource manager forms the central clearinghouse for reservations made

on behalf of applications. The admission controller described by Mercer et al. [39]

is a basic resource manager for a reservation-based multimedia CPU scheduler,

and serves two functions. First, the admission controller ensures that the CPU is

not over-subscribed; that is, the sum of all CPU reservations does not exceed the
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actual CPU rate. Second, the admission controller only allows a user to start a new

application if the CPU rate that it requires can be reserved from the unallocated

portion of the CPU capacity. For example, when the user tries to run a video

decoder application, the application would make a request for a specific CPU rate

to the admission controller; the controller would either fulfill the request or kill the

video decoder application. Clearly, this behavior may be surprising to the user, who

very likely is willing to trade off the quality of some other applications in order to

watch the video. More sophisticated resource managers attempt to aid the user in

making such trade-offs, as will be discussed shortly.

1.2 Managing Reservations

Given these four key system components, the high-level challenge facing the user

is, how to interact with the system in order to achieve his or her goals? The basic

aspects of this interaction are:

• The user wishes to give reservations to applications that enable them to run

at a high enough quality to accomplish his or her shifting purposes.

• Multimedia applications, such as MPEG video decoders, can place heavy and

variable resource demands on the system (this is described in Chapter 2).

• Simple admission control, where the system refuses to run an application that

requests more resources than are currently free, is too restrictive. Rather, the

system should help the user to make resource trade-offs in order to get good

value from his or her applications.

These aspects lead to frequent periods of overload. We define overload as the

situation where it is not possible to give all applications the reservations they re-

quire to run at full quality; note that overload does not imply that the CPU is
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over-reserved, but simply that trade-offs must be made in order to increase an ap-

plication’s quality. Acute overload can result from an application’s changing CPU

requirements, for example when a video decoder temporarily needs more cycles to

decode an action scene, but chronic overload is also possible if the user simply wants

to run many applications concurrently at reduced quality. As a result, in the normal

operation of a firm real-time multimedia system, the user and system must coop-

eratively make frequent and explicit choices about how to distribute scarce CPU

cycles to applications. Next we examine some alternative strategies for managing

application CPU reservations, as a means of introducing the problems that will be

addressed by this thesis.

1.2.1 User Assignment

The first and simplest strategy, used in some prototype systems (e.g., SMART

[45, 46]), is that the user manually sets the reservations for all applications. That is,

the user configures the CPU scheduler with application reservations, the scheduler

delivers cycles to each application in line with its reservation, and the application

uses the cycles to meet deadlines, make progress, and deliver value to the user. This

scenario does not require a separate resource manager, since the CPU scheduler

interface can ensure that the outstanding CPU reservations do not total more than

100% of the CPU capacity.

One weakness with this approach is that, in order to know what reservation to

give a multimedia or interactive application, the user must understand the nature

of its fine-grained resource requirements. A time constraint consists of a deadline

and an execution requirement [30]; if the application does not receive the cycles

specified by the execution requirement by the deadline, it will be missed. The

application’s quality depends on its ability to meet its time constraints, and this in
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turn depends on obtaining a reservation that is large enough to deliver the required

service by each deadline. The problem is that understanding the time constraints

of real applications is far from trivial; the wide variability in an MPEG decoder’s

time constraints, for example, is examined in Chapter 2. However, without detailed

knowledge of the application’s potential peak resource usage, the user cannot choose

a reservation that will meet a high percentage of its future time constraints. It

is clear that requiring the user to understand the fine-grained real-time resource

requests made by applications places an undue burden on him or her.

On the other hand, without this knowledge, the user seems confined to a process

of trial-and-error to discover a set of application reservations that satisfies his or

her goals. Consider a simple user interface that associates a button labeled better

with each application; clicking an application’s button increases its reservation by

some small amount (this is like the “large red button” for interactive terminals

described by Lampson in [33]). If the user is unhappy with the performance of

an application, he can click on the button that increases its reservation until its

performance improves. However, this too would seem to unduly burden the user;

for example, the resources that an MPEG video player needs to decode and display

the video at full frame rate and resolution may change over time, as scene contents

or video encoding parameters change. As the video’s resource requirements increase,

its quality may decline; now the user is faced with the responsibility of clicking the

better button until its quality is restored.

Finally, the situation becomes much more unmanageable in overload, when the

entire CPU capacity is reserved and the user is still unhappy with an application’s

performance. To handle this case, the user can be given a second button (labeled

worse) per application that decreases its reservation by some amount. The user

must now click the worse button in order to free up cycles, and then click the

better button of the application whose quality he or she wants to improve. In
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the process, the user will be forced to prioritize; the user will likely differentiate

between applications based on their relative importance based on his or her goals,

and decrease the reservations of less important applications in order to increase

the reservations of more important ones. Since the user’s attention is naturally

directed toward the more important applications, he may decide that any change

in reservations that improves the quality of a more important application at the

expense of a less important one increases the system’s overall value. On the other

hand, less important applications provide the user with value too: the user wants

the quality of less important applications to be as high as possible. The user may

also not want a less important application to be allowed to starve. Finally, the

importance of an application is a function of the user’s goals and attention. Since

these change over time, this means that the correct reservation for an application

now may not be correct later. When the system is overloaded, a sure recipe for user

frustration is to force him or her to repeatedly click on buttons in order to try to

discover how to bring the set of reservations in line with his or her goals.

1.2.2 Intelligent Applications

Distributed multimedia applications are being built that have the intelligence to

adapt their quality to changing conditions in the network or end-host [47, 50, 67].

For example, a streaming video server may change its transmission rate in response

to packet drops in the network, or change the encoding parameters of the video

so that the decoder running on the client consumes fewer cycles. An intelligent

multimedia application provides the user with more value in two ways: by hiding

details of its low-level resource usage from the user, and by adapting its behavior to

use the available resources more efficiently. We discuss each in more detail below.
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A resource-aware application understands its own resource requirements by ob-

serving the resource usage of the specific tasks that it performs [27]. Such an

application may provide the user with different quality levels, and enable the user

to set the application’s reservation indirectly by choosing a satisfactory quality. The

application knows what resources it needs to provide each quality level, and nego-

tiates with the system to obtain the appropriate reservation [28]. For example, a

video player’s quality levels may include a number of resolutions and frame rates

at which it can decode and display the video. If the resource requirements of the

application increase, so that the current reservation is no longer sufficient to provide

the selected quality, it can negotiate a new reservation automatically. An applica-

tion that can make its own reservations allows the user to cleanly express his goals

to the system without requiring any knowledge of the actual resources required to

achieve them.

Some resource-aware applications have the ability to advertise their time con-

straints to the CPU scheduler. One strategy that an adaptive multimedia applica-

tion could employ is to compare the promises that it obtains from the CPU scheduler

with its own time constraints, in order to avoid fruitless work and provide better

application quality with its reservation [30, 36, 45]. For example, suppose that the

CPU scheduler promises to provide a video player with no less than 5 million cycles

before its next frame deadline in 33ms. If the video player knows that it can decode

the next frame of the video within this amount of cycles, then it can predict that

the frame deadline will be met (Chapter 2 discusses how this sort of knowledge is

possible). However, if the application thinks that decoding the frame will cost 6

million cycles, then the deadline may not be met because this amount exceeds the

promise. In the latter case, the video player can respond proactively by discarding

the frame or decoding it at a lower resolution, or it can simply take its chances that

the deadline will be met anyhow. Since adaptive applications can use resources
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more efficiently, they can typically provide the user with more value at a given level

of resource consumption than do traditional multimedia applications.

Smart multimedia applications do not completely solve the problem of manag-

ing reservations because they make only localized resource decisions based on their

own needs; global decisions must still be made by the user. This issue has two di-

mensions. First, application programmers want their applications to perform well,

and so will often request a conservative reservation that is likely to allow the ap-

plication to meet all future resource requests [51]. While conservative reservations

are good for the applications that make them, they can lead to system underuti-

lization because less unallocated capacity is available for new applications. Second,

by themselves intelligent applications do not solve the problems of CPU overload;

the user is placed in essentially the same situation described in Section 1.2.1. Ap-

plications that only adapt their behavior to the available resources still require the

user, or some other entity, to select and adjust all of the application reservations;

they are simply able to provide somewhat better quality with the same amount of

resources than existing multimedia applications. Likewise, an application that can

automatically adjust its reservation frees the user from having to intervene when

the application’s requirements change only as long as excess CPU capacity is avail-

able. In an overload situation, an application that needs more cycles to maintain

its overall quality cannot get them, and the user must free up cycles by decreasing

the quality level (and hence the reservation) of some other application. This means

that the user may still have to spend a significant amount of time clicking in order

to find a balance that satisfies his goals.
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1.2.3 Feedback Controllers

Resource managers act as intermediaries between applications and the kernel, and

their job is to arbitrate resource reservation requests. A sophisticated resource

manager may reduce the user’s burden by choosing application reservations on his

behalf; ideally, the resource manager allocates resources to applications in order to

provide the user with the most perceived value [28].

A feedback controller [1, 38, 59] can provide effective resource management for a

firm real-time multimedia system. Feedback controllers monitor metrics associated

with application quality and user satisfaction, and attempt to adjust CPU reserva-

tions in order to maintain the metrics at acceptable levels. A feedback controller

is more flexible than the admission controller discussed earlier, since the feedback

controller can allow the system to enter an overload situation and then rebalance

reservations to preserve good system behavior. This essentially automates the user’s

interactions with the scheduler as described in Section 1.2.1. Feedback controllers

are often based on ideas from control theory and conform to analytic models of sys-

tem behavior, and therefore can form an integral part of a firm real-time multimedia

system.

A feedback controller monitors the quality of all the applications in the system

and, when there is excess CPU capacity, boosts the reservations of any applications

that are performing poorly. In this situation, a feedback controller performs much

the same function as the intelligent applications discussed in Section 1.2.2: it au-

tomatically sets an application’s reservation, and it negotiates a new reservation

with the system when the application’s resource requirements change. It has the

significant additional benefit of working with existing applications.

In overload, the behavior of a feedback controller is more complex: it must

make global judgments about how redistributing resources may affect the user-
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perceived value of the system. To aid it in making these decisions, the feedback

controller may provide the user with an interface to indicate the relative importance

of applications. A basic interface could include two priority levels: important and

unimportant. This information could help the controller steer scarce CPU cycles

toward improving the metrics of important applications and degrading those of

unimportant ones, again essentially automating the rebalancing of resources that

the user would perform manually. The user’s task is made significantly easier by the

feedback controller, since he or she only has to indicate whether each application is

important to the user’s current goals; it may be even be possible to automatically

infer user importance from application behavior [18]. Ideally, as the user’s goals

change, he or she simply adjusts these designations and the controller does the rest.

A key problem with feedback controllers is that they are reactive. In other words,

the controller must notice that an application is performing poorly, as reflected in a

monitored metric, before adjusting its reservation. By this time, the user may have

noticed that the application is performing poorly too, and perhaps has become

annoyed. Also, controller oscillation must be avoided, since a video oscillating

between good and poor quality may be more annoying than one whose quality is

consistently poor. Damping is frequently used in a feedback controller to prevent

oscillation but may cause it to respond sluggishly to poor application quality or

changing user goals.

1.3 Problem Statement

The user would like to get maximum value from the hardware and applications

that he or she has paid for, and expects the system’s help in doing so. However,

maximizing user value in a multimedia system is difficult for three reasons. First,

like many optimization problems, in general this problem is NP-hard. Second, the
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system may have incomplete or incorrect information about how much value to the

user each application is delivering, or how much it can deliver at different CPU

reservations. Third, both the actual resource demands of multimedia applications,

and the value that the user derives from applications, can change frequently. We

discuss each of these points in more detail below.

In overload it may be necessary to change application reservations to provide

the user with acceptable value. We note that if the system is trying to maximize

the user value, then the problem reduces to the Multiple-Choice Knapsack Problem

(MCKP), which is a well-known NP-hard problem [31]. The MCKP can be infor-

mally stated as follows. Suppose we are given a knapsack of a particular capacity,

N classes of items (e.g., sleeping bags, camp stoves, water purifiers), and the size

and value of each item in the class. The MCKP is to to place no more than one

item of each class in the knapsack, in order to maximize the overall value of the load

without overflowing the knapsack; for instance, we may choose between a bulky but

warm sleeping bag and a small bag that is not very warm. Intuitively, given a set

of items already packet in the knapsack, it is easy to find a set of items with higher

value if there is plenty of room left in the knapsack, and we can put in a new item

without having to take any others out. On the other hand, finding a higher value

solution gets harder when the knapsack is full or nearly so; in this case increasing

the value means removing some items and replacing them with different ones. In

this case, the right choice of objects to swap may not be obvious.

Choosing reservations in a multimedia system trivially reduces to MCKP. The

CPU rate is the capacity of the knapsack and an application corresponds to an item

class. Given a particular reservation, each application can achieve some minimum

quality that, in turn, provides the user with some value. The reservation is the

size of a particular item in the class; the quantity of user value maps onto the

item’s value. In other words, a lightly loaded system corresponds to the case where
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there is plenty of room left in the knapsack; the full knapsack represents overload.

MCKP been extensively studied, and is widely regarded as one of the “easier”

NP-hard problems. Algorithms exist to solve it in pseudo-polynomial time, solve

many instances of it in polynomial time, and provide approximate solutions to any

desired degree of accuracy [31]. The point is that adapting application shares in

overload is related to to a computationally hard problem, and this should temper

our expectations about what simple heuristics can achieve across all situations.

Let us suppose that, in order to help the user get more value from the system, a

sophisticated feedback controller calculates or approximates solutions to the MCKP

problem and uses this information when adapting an application’s reservation during

overload. In order to operate, this controller needs to understand how changes in

an application’s reservation affect the value it is delivering to the user. Such a

mapping from reservations to user value can naturally be broken down into two

steps: mapping reservations to application quality levels, and mapping quality to

value. That is, a multimedia application uses the cycles given it by the scheduler to

meet deadlines, which affect the quality achieved by the application; depending on

his goals and attention, a particular application quality level may provide the user

with much or little value.

The task of constructing a value-maximizing feedback controller is complicated

by the fact that neither of these two mappings is completely available in current

multimedia systems. First, mapping reservation to quality for a particular multi-

media application would appear to require knowledge of how many deadlines the

application can meet with a particular reservation, but this is often not clear for

real applications such as an MPEG decoder. The issue is that the quality provided

by the MPEG decoder with a particular reservation depends in part on properties

of the video stream itself, as described in Chapter 2; these properties may not be

known in advance. Second, mapping quality to value requires quantifying subjective
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user value. The field of modeling how users derive value from their applications is

a relatively new one [69]. To our knowledge, it has not yet produced a comprehen-

sive model of user value as a function of the quality provided by various types of

applications and the potentially shifting goals of the user.

Even with perfect information on how to map application reservations to user

value, a feedback controller may not at all times assign application reservations that

are in line with applications’ needs and the user’s goals. The reason is that all as-

pects of the mapping from application reservations to user value can change rapidly,

and it may take some time for these changes to be acted upon by the controller.

For example, the reservation required by an MPEG video decoder to produce a

particular resolution and frame rate may change as the video switches scenes, the

user may start or terminate an application, or the user’s goals and attention may be

redirected, meaning that an application that was previously providing the user with

high value is now of low value. Some time will elapse before the feedback controller

becomes aware of these changes; afterward, the changes may not be reflected in the

system immediately due to the period at which the controller runs or the damping

that is used to help prevent controller oscillation.

Based on the above, we conclude that the most sophisticated multimedia system

at times will mismatch the reservations of some applications with the user’s goals or

the applications’ resource needs. This discrepancy may occur because some aspect

of the mapping from application reservation to user value has changed, and the

controller has not yet adjusted the reservations to reflect it; because the model

the controller uses to map reservations to value is incorrect or incomplete; or due

to approximation error or other limitations in the algorithm the controller uses to

calculate reservations. Even if the discrepancy is transient, the user may still notice

it and become dissatisfied with the behavior of the system. Our thesis describes

one approach to solving this problem.
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1.4 Thesis

In order to be usable, especially in overload, a multimedia system should automat-

ically adjust the resource usage of applications in order to provide the user with

sufficient value. We summarize the discussion so far by postulating the following

Principles of User Benefit, stating how firm real-time multimedia systems should

adapt to changing user goals and application resource needs:

PUB1: When the system is underloaded and the CPU capacity is not fully re-

served, the system should automatically provide good application quality.

This means meeting the time constraints of multimedia and interactive appli-

cations, and providing batch applications with good progress.

PUB2: In overload, it may not be possible for the system to choose reservations

that allow all applications to achieve good quality. The goal of the system

should be to choose a set of reservations that maximize the value that the

user obtains from his applications, but this is a hard problem and therefore

the user may not always be satisfied with the results.

In an overload situation, we propose to help the user by prioritizing applications

based on their subjective importance. The next four principles offer simple guide-

lines about the nature of importance and how the system should account for it in

overload.

PUB3: Importance is a function of the user’s goals and attention. As user goals

and attention shift over time, so does application importance.

PUB4: In overload, improving the quality of a more important application at the

expense of a less important one leads to increased user value, with the caveat

of Principle PUB4 below.
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PUB5: Less important applications should provide good quality to the extent pos-

sible once the resource needs of more important applications have been satis-

fied.

PUB6: Starvation should only be allowed to the extent desired by the user. That

is, the user may insist that an application receive a minimum CPU reservation

at all times.

The thesis of this dissertation is that a firm real-time multimedia system must

do more than intelligently select reservations for applications; it must also deal

gracefully with the situation where the user is dissatisfied because the reservations

that the system has chosen, despite its best efforts, do not adequately reflect his

goals at that moment. To accomplish this, we propose pushing more intelligence

into the CPU scheduler itself. Specifically, a reservation-based CPU scheduler for a

multimedia system should sometimes depart from reservations at a fine-grained level,

making and breaking real-time promises in line with the Principles of User Benefit.

The key point here is that reservations should be seen as the primary means that

the system CPU scheduler has of furthering the end of providing value to the user.

As a result, resource promises can and should be broken if doing so enables the

system to provide the user with more value as outlined by the Principles of User

Benefit. Primarily this means breaking promises to less important applications in

order to meet the resource needs of more important ones.

The system we envision splits responsibility for adapting CPU allocations be-

tween a feedback controller and the CPU scheduler itself. The feedback controller

would choose CPU reservations to provide the user with the best value that it can,

as described in Section 1.3. The controller operates at a coarse-grained timescale,

and by changing an application’s reservations it adjusts an abstract representations

of the application’s aggregate real-time CPU requirements. Concurrently, the CPU

17



scheduler tries to conceal from the user any discrepancy between the last set of

reservations chosen by the feedback controller, and the current user goals and ap-

plication requirements. To this end, multimedia and interactive applications inform

the CPU scheduler of their fine-grained time constraints, for example, the number

of cycles required to decode the next video frame and the frame’s deadline; this

requires only small changes to existing applications, as described in Chapter 2. The

user informs the CPU scheduler of his priorities by marking each application as im-

portant or unimportant, just as he or she does with the feedback controller described

in Section 1.2.3.

The key feature of our system is that the CPU scheduler uses the informa-

tion provided by the user and applications to make fine-grained, global, proactive

resource decisions in accordance with the Principles of User Benefit. When an ap-

plication tells the CPU scheduler of a time constraint, the scheduler promises to

meet the constraint if it falls within the application’s reservation, or if one of two

other conditions holds. First, if an application has a time constraint that requires

a promise beyond its reservation, and excess CPU capacity is available, then the

scheduler automatically uses the excess capacity to make a promise that satisfies the

constraint (Principle PUB1). Second, if the application requests a promise beyond

its reservation but there is not enough excess CPU capacity, then the scheduler

factors in application importance: it shifts cycles away from unimportant applica-

tions to meet the time constraints of important ones (Principles PUB2, PUB4).

This shifting takes place on a first-come, first-served basis, so a request made by an

important application for extra cycles may not be granted; in the worst case, where

shifting cannot take place because there are no unimportant applications, or all

available unimportant cycles have been shifted, an important application receives

no more cycles than it has reserved. Associating a single importance button with

each application makes it easy for the user to communicate his shifting goals (Prin-
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ciple PUB3). Of course, shifting cycles away from unimportant applications may

cause earlier promises made to those applications to be broken; however, shifting

limited amounts of cycles to meet individual time constraints of important applica-

tions, rather than simply giving these applications strict priority over unimportant

applications, allows more unimportant constraints to be met (Principle PUB5).

Additionally, making global decisions at the level of individual, fine-grained time

constraints allows the scheduler to keep all applications informed, even unimportant

ones, about which time constraints it does and does not promise to meet. Finally,

our system permits the user to set a single system-wide variable to indicate the

minimum amount of resources that an unimportant application should be guaran-

teed (Principle PUB6). This parameter can be set to zero if the user thinks that

important tasks should be able to starve unimportant ones.

The central contribution of my dissertation is a prototype implementation of

the firm real-time CPU scheduling algorithm described above, called Tyche. Tyche

is the Greek goddess of Fortune, and she raises some men up and casts others

down according to her whims; our scheduler gives the user similar power over his

applications. Tyche grew out of earlier work on the BERT CPU scheduler [10], which

is a multimedia CPU scheduler implemented for the Scout operating system [42, 57].

Tyche combines:

• A state-of-the-art multimedia CPU scheduling algorithm

• A simple interface by which the user indicates application importance to the

system

• The novel share shifting mechanism that adjusts the fine-grained promises

made by the system to applications in accordance with the Principles of User

Benefit
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A key challenge in designing a firm real-time CPU scheduler is analyzing its real-

time behavior: firm real-time systems typically derive their predictable behavior

from analytic models and theoretical results. In Chapter 3 we extend the theory

underlying proportional share scheduling, an important class of reservation-based

schedulers, to establish a new methodology for creating novel scheduling algorithms

with provable real-time properties. Then, in Chapter 4, we employ this methodology

to define share shifting as part of the analytic model underlying Tyche, and from this

model we derive the Tyche algorithm itself. This process leads us to a scheduling

algorithm that conforms to the Principles of User Benefit in real time.

The tangible benefit of running Tyche in a firm real-time multimedia system

is that it increases an application’s robustness to its choice of share. This is a

new metric that we will discuss at length in Chapter 5. Intuitively, the metric

attempts to answer the following question: “If the user is unhappy with the qual-

ity of an important application, what is the probability that activating the share

shifting mechanism will increase the application’s quality enough to make him or

her happy?” For example, we show in Chapter 5 that Tyche increases a multime-

dia application’s robustness to its choice of share by 13-30% if the user will only

be satisfied if the application achieves 95% of its deadlines, and that an interac-

tive application’s robustness is increased by 88% if the user desires a response time

under 100ms. In line with the “principle of least astonishment”, this means that

the important applications live up to the user’s expectations even when there is a

mismatch between an application’s reservation and the user’s goals. Furthermore,

since Tyche dramatically reduces the pressure on a feedback controller to choose

ideal reservations, it may be possible to obtain good results using a less sophisticated

controller or even a well-designed graphical user interface.

One advantage of Tyche is that it requires only small changes to existing sys-

tems. Chapter 4 shows how Tyche’s share shifting mechanism can be added to a
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proportional share CPU scheduler. To become more robust to its choice of share, a

multimedia application must inform Tyche about its time constraints. As described

in Chapter 2, research suggests that existing multimedia applications can be made

resource-aware, and thus take advantage of Tyche’s advanced features, with minor

modifications. Thus, Tyche can provide an evolutionary path toward the smart,

adaptive applications discussed in Section 1.2.2. Tyche can also work hand-in-hand

with more sophisticated smart applications as they emerge, as demonstrated in

Chapter 5. However, Tyche does not mandate changes to existing applications, and

any application can simply receive a CPU reservation.

The dissertation is organized as follows. Chapter 2 discusses the background of

multimedia CPU scheduling in more detail. Chapters 3 and 4 present the Tyche

CPU scheduler, from its theoretical foundation to the real-time behavior of its imple-

mentation. Chapter 5 argues that the methods used to evaluate recent soft real-time

multimedia CPU schedulers are inadequate for use with Tyche, and presents the

robustness to choice of share metric in response; several scenarios involving multi-

media, interactive, and batch tasks are evaluated using this new metric to establish

the value of share shifting. Finally, Chapter 6 summarizes the contributions of this

dissertation and maps out future work.
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Chapter 2

Background

A multimedia PC or workstation runs many different kinds of applications, includ-

ing audio and video encoders and players, games, Web browsers, shells, graphical

applications such as CAD tools, text editors, spreadsheets, databases, language

compilers and interpreters, and so on. The essential problem of multimedia CPU

scheduling is, how to timeslice the CPU among an arbitrary mix of such applica-

tions in order to provide the best overall system behavior. This chapter discusses

the various dimensions of this problem and presents previous efforts to solve it.

2.1 Classifying Applications

For purposes of CPU scheduling, the applications that run on a multimedia PC can

be usefully classified into one of three groups: batch, interactive, and multimedia [44].

This classification derives from the nature of the application time constraints and

how satisfying them delivers value to the user. Interactive and multimedia appli-

cations are both examples of real-time applications, differing mainly in the value

of work that misses deadlines. Batch applications do not have readily-identifiable

time constraints.
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A batch application, such as a long-running compilation or scientific program,

provides the user with value simply by finishing. Many batch applications are

slightly interactive, since the user is often sitting at the console waiting for a job

to complete. As a result, a batch application generally provides more value to the

user by finishing sooner rather than later. Otherwise, it is difficult to characterize

the CPU needs of a batch application; for example, a CPU-bound application can

use essentially unlimited amounts of cycles, while an I/O-bound application may

require few cycles.

Second, interactive applications are typically event-driven and have deadlines

that are governed by human perception. A canonical example of an interactive

application is moving the mouse: based on the limits of human perception, the

mouse cursor should change position within about 100ms of the user moving the

mouse for the response to seem timely [56]. The deadlines of an interactive applica-

tion are “soft”, meaning that the application can still deliver value (albeit a lesser

amount) if work is executed after its deadline. For example, if the mouse cursor

changes position 200ms after the user moves the mouse, then the user may notice

the delay—but this is still preferable to the cursor not moving at all. In other words,

an interactive application’s deadlines are really goals or hints for better application

performance; the application can still deliver value to the user if these deadlines

are missed. Since interactive applications are driven by external events, their CPU

usage is often bursty in nature.

Third, multimedia applications such as an MPEG video decoder typically have

well-defined deadlines that occur at regular intervals. The key distinction between

multimedia and interactive applications is that multimedia deadlines are “firm”, in

that they are either made or missed; a late frame cannot be displayed at its proper

place in the sequence, and so does not deliver any value to the user. Most multime-

dia applications perform repetitive tasks such as decoding subsequent frames in a
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video sequence, and as a result often have fairly regular (but not uniform) real-time

CPU requirements; this important point will be discussed in more detail shortly.

Since multimedia applications, particularly those that decode and display video, are

central to the problem of multimedia CPU scheduling, in the next section we look

more closely at the computational requirements of a representative example.

We do not expect a multimedia PC to run safety-critical real-time tasks such as

the controller of a laser surgery device. Such tasks typically have “hard” deadlines.

Firm and hard deadlines are both binary (both are either made or missed), but they

are distinguised by the consequences of missing a deadline: missing a hard deadline

may result in a catastrophic failure, leading to loss of life and limb. We do not

consider the problem of scheduling such tasks in this thesis.

2.2 MPEG Video Decoder

A single MPEG video decoder playing a high resolution video can consume a sig-

nificant fraction of the cycles available on a modern processor [45, 46]. The decoder

also has tight deadlines: a decoder playing at 30 frames per second must have a

frame decoded and ready to display every 33 milliseconds. If a frame misses its

deadline, then it cannot be displayed and there will be a gap in the frame sequence.

A video application may occasionally miss deadlines without the user noticing, but

if it misses too many then the video’s quality will suffer. A difficulty for reservation-

based CPU schedulers is that MPEG decoding consumes processing at a variable

rate, making it difficult to choose a reservation without detailed knowledge of the

application’s resource requirements. This section discusses the issue in more depth.

The MPEG video compression standard defines a video stream as a sequence of

still images (frames) that are displayed at a specific rate [40]. Each frame is of a

particular type: I frames (intra-picture), P frames (predicted picture) and B frames
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(bidirectional predicted picture). I frames are self-contained, complete images. P

and B frames are encoded as differences from other reference frames. Only I and P

frames may be used as reference frames. A group of pictures (GOP) is a sequence

of frames beginning with an I frame and ending just before the next I frame; e.g., I

B B P B B P B B. Note that there is no requirement that the same GOP sequence

is used throughout a video.

A given frame consists of a collection of macroblocks, each of which corresponds

to a 16×16 block of pixels. The MPEG algorithm operates on macroblocks, not

entire frames, and not all the macroblocks contained in a frame of a given type

are necessarily of that type. It is possible, for example, to have an I encoded

macroblock as part of what is otherwise a B frame. In way of a brief overview

to the computational requirements of MPEG, we observe that I macroblocks are

the most expensive to decode, as doing so involves the computationally expensive

Discrete Cosine Transform (DCT). Before the DCT can be applied, however, the

values must first be run-length decoded, Huffman decoded, and passed through a

reverse quantization process. In contrast, the processing required to decode B and

P macroblocks is less demanding. Consider the decoding of a B macroblock, which

depends on both a previous and a subsequent I or P frame. Each B macroblock is

represented with a 4-tuple: (1) a coordinate for the macroblock in the frame, (2) a

motion vector relative to the previous reference frame, (3) a motion vector relative

to the subsequent reference frame, and (4) a delta for each pixel in the macroblock

(i.e., how much each pixel has changed relative to the two reference pixels).1 For

each pixel in the macroblock, the first task is to find the corresponding reference

pixel in the past and future reference frames using the two motion vectors. Then,

the delta for the pixel is added to the average of these two reference pixels.

1
P macroblocks are decoded in a similar fashion, except they depend on just the previous

reference frame, and so include only a single motion vector. Also, a B-block can optionally be
encoded with just one motion vector, rather than two.

25



2.2.1 CPU Reservations for MPEG Video

A key challenge for a reservation-based multimedia system is to choose reservations

that balance an application’s goal of meeting its deadlines with the user’s goal of

receiving the most value from the system. This challenge is made more difficult by

the numerous sources of variability in an MPEG video stream. As a result of this

variability, choosing a reservation based on the video’s average CPU requirements

may not always lead to good results. Next we briefly discuss each of these sources of

variability, and how they complicate the problem of understanding what reservation

a MPEG decoder requires to achieve the best possible quality.

First, as already mentioned, an MPEG video is composed of three different

types of frames: I, P , and B. The complexity of the MPEG specification leads to

large variations in the decode times of individual video frames. In [8] we describe

experiments using an MPEG-1 video player to decode various video clips. In one

experiment, while the player is decoding and displaying the movie “Terminator 2”,

it requires from 6 million to 18 million cycles to decode frames with similar content.

However, we show a strong linear correlation between the time it takes to decode a

macroblock of a particular type and its size. Since a frame of a particular type is

mostly composed of macroblocks of the same type, it follows that the time to decode

a frame of a particular type is strongly correlated with the number of macroblocks

that the frame contains and the length of the encoded frame in bytes. We then

use this linear model to create a low-overhead learning algorithm for predicting a

frame’s decode time with an error of less than 25%. This model makes it possible

for the MPEG decoder itself to predict its own fine-grained resource requirements;

real-time CPU schedulers often depend on the ability of applications to understand

and inform the system of their resource needs, as discussed in Section 2.3.
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Second, there is variation in the number of cycles required to decode frames of

a particular type. For example, the size of individual B frames within a video can

vary by as much as an order of magnitude from the video’s average B frame size [23].

Such frames often take significantly longer to decode than the average, since there

is a rough linear correlation between a frame’s size and its decode time.

Third, the average CPU utilization of a video can change as its contents change.

It is more expensive to decode detailed scenes and scenes with a great deal of

movement. Therefore, decoding a daylight car chase may consume many more

cycles on average than decoding a tranquil love scene taking place in a darkened

room.

Fourth, the GOP sequence may change within a video. A smart encoder may

decide to depart from the GOP sequence as an optimization. For instance, within

an action sequence, the encoder may decide to encode B frames with too many

motion vectors as I frames instead. Additionally, a scene change that occurs in the

middle of a GOP may cause it to be truncated.

Fifth, application requirements and capabilities may influence the choice of its

reservation. A video player may be able to use buffering to smooth the variation in

frame decode times. That is, by working ahead in the video sequence when frames

consume fewer than average cycles to decode, it can keep up its display rate when

decoding frames with higher-than-average cycle costs. However, buffering more

than a frame or two may not be an option for some systems and applications. For

example, consider a video playing at 30 frames per second with a resolution of 720

by 480 and using 32-bit color; individual frames of the video consume about 1.4

megabytes each, and one second of video consumes over 41 megabytes. A hand-

held device with limited memory capacity may only be able to store a few frames.

Buffering is also often used in conjunction with delayed playback, which introduces

latency into the video stream in order to further reduce jitter. Certain applications
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require minimal latency to produce good application quality. For example, in order

to keep end-to-end latencies low, a network videoconference application may be able

to delay playback by no more than a frame or two; the frame must be decoded and

displayed within milliseconds of its arrival from the network [25].

For systems or applications where buffering is restricted, a conservative reser-

vation may be required to meet enough deadlines to produce high-quality video

playback. However, the magnitude of the MPEG player’s resource usage, com-

bined with variations in frame decode times, can make a conservative reservation

unattractive. For example, the “Terminator 2” video clip mentioned above has an

average frame decode time of about 8 million cycles, yet can require up to 18 million

cycles to decode a large I frame. In the worst case, with no buffering, the video

will require a reservation of over twice its average rate in order to ensure that its

peak requirements will be satisfied. At 30 frames per second, this translates to a

reservation of 540 million cycles per second for the video, but on average the video

only consumes 240 million cycles per second. Reserving relatively large fractions

of the CPU capacity to cover infrequent peaks in resource usage can easily lead to

system underutilization.

Since variance in frame decode times can cause problems for multimedia systems

that use reservation-based CPU schedulers, JPEG-encoded video players are some-

times used to evaluate such systems (e.g., SMART [45, 46]). JPEG video consists

of frames of a single type, namely the I frames in a MPEG video, and therefore

JPEG players show much less variation in their fine-grained resource requirements

than MPEG players do. Reducing this variability simplifies the problem of choos-

ing a reservation for the video; since decoding each frame consumes about the same

amount of cycles, it is easier for a JPEG player to meet its time constraints with a

reservation equal to its average CPU usage. However, note that since they are com-

posed exclusively of I macroblocks, the I frames of an MPEG video are typically the

28



most expensive to decode; this means that more resources are consumed decoding

a JPEG-encoded video than the equivalent video with MPEG encoding. We argue

that, due to the relative wastefulness of JPEG encoding, it is overly simplistic to

study only JPEG players in the context of multimedia scheduling; in the evaluation

of Tyche in Chapter 5, we use a workload characteristic of an MPEG decoder.

2.3 CPU Scheduling Algorithms

A firm real-time multimedia system typically employs a reservation-based CPU

scheduler. However, many other CPU schedulers have also been suggested for mul-

timedia systems, from hard real-time schedulers to those that do not provide any

specific real-time behavior. This section sketches the primary points in the de-

sign space for multimedia CPU scheduling algorithms; some additional approaches

will be discussed in Section 2.4. In the process of describing this space, we argue

that firm real-time is the correct point on the real-time spectrum for multimedia

systems, and establish the comparative advantages of reservation-based CPU sched-

ulers by pointing out where other approaches violate the Principles of User Benefit

presented in Chapter 1. Throughout this discussion, we assume a uniprocessor PC

and a preemptive multitasking OS; we also ignore application dependency issues.

First we define some terminology. An application submits requests at particular

times for specific amounts of CPU cycles. If a request has an associated deadline,

it is a time constraint; otherwise it is simply a best-effort timeslice. An application

with an outstanding request is said to be runnable or active. For example, a

batch application that was previously blocked on a semaphore and is woken up is

considered to submit a request for a timeslice with no time constraint. In real-time

terminology, a request is often called a job, and is characterized by its arrival time,

execution time, and deadline.
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2.3.1 Importance-based

A simple method for scheduling a multimedia application mix is for the user to

assign every application a priority based on its importance to the subjective goals

of the user. The system then runs the application with the highest priority, and

applications with the same priority are run round-robin. A key advantage to this

approach is that the user will find the resulting system behavior fairly intuitive,

even in overload, since the scheduler provides resources to those applications that

are most important to him or her.

Multimedia and interactive applications are more sensitive than batch applica-

tions to having their requests met in a timely manner. Assuming that it is important

for the user that the time constraints of multimedia and interactive applications are

satisfied, an obvious choice would be to run batch applications at the lowest priority

and other applications at higher priorities. The problem is that, depending on how

priorities are assigned, a fixed priority scheduling may unnecessarily miss time con-

straints: a more important application with a deadline far in the future will always

run before a less important application with a pressing deadline, possibly causing

the latter to be missed, even if running the less important application first would

allow both deadlines to be met (violating Principle PUB5). Starvation is also a

significant drawback of an importance-based priority scheduler. For example, a

CPU-bound batch application can starve all lower priority applications; even if this

application is the most important to the user, he or she may not intend to starve all

the others (violating Principle PUB6). Though importance-based priority schedul-

ing has its drawbacks for multimedia CPU scheduling, there is still significant merit

to the idea of figuring out how to assign fixed priorities to applications with time

constraints, as discussed next.
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2.3.2 Rate Monotonic

Rate monotonic CPU schedulers, originally proposed by Liu and Layland [37] and

Serlin [55], are widely used in industrial and safety-critical real-time systems. Rate

monotonic schedulers are static priority schedulers, meaning that the priority as-

signed to an application is determined once (e.g., at system design time) and the

scheduler always runs the application with the highest priority. The complexity of

rate monotonic scheduling comes not from the scheduling mechanism, which clearly

is quite simple, but rather from the constraints placed on the requests of applica-

tions. That is, in order to produce real-time behavior suitable for a safety-critical

system, rate monotonic schedulers rely on applications to limit their resource de-

mands to conform to a specific task model. Rate monotonic analysis then derives

static priorities for applications based on their model parameters to produce a cor-

rect schedule that meets all model requirements.

The periodic task model forms the foundation of rate monotonic scheduling. A

periodic task issues jobs (requests) that recur with some period; for example, the

jobs of a video decoder may have a period of 33ms and an execution time based on

the video’s worst-case frame decode time. An important point is that the period

represents the inter-arrival time between jobs, meaning that the video decoder must

issue jobs 33ms apart; this ensures “gaps” in the schedule in which the jobs of other

tasks can run. With these restrictions, the rate monotonic scheduling algorithm

for periodic tasks is simply to assign higher priorities to tasks with shorter periods.

Intuitively, this means that tasks with longer periods are run in the gaps between

tasks with shorter periods. Liu and Layland show that a rate monotonic scheduler

is able to meet all deadlines of n periodic tasks if the aggregate load placed on

the system is no more than n(21/n − 1), and for large n, this is approximately

ln 2 ≈ 0.693. Lehoczky et al. establish that this lower bound is pessimistic in
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practice, and that a load of 0.88 can be achieved in the average case [35].

The periodic task model is often used to schedule hard real-time applications

that cannot miss deadlines. Two other task models are used for applications with

less stringent requirements: sporadic and aperiodic. A sporadic task is like a periodic

task, except that its period represents the minimum inter-arrival time between jobs;

in other words, a periodic task issues jobs at definite times but a sporadic task does

not. Sporadic tasks can be assigned priorities based on their period just like periodic

tasks. An aperiodic task does not have any particular time constraints and so should

receive cycles on a “best effort” basis. Aperiodic tasks are often integrated into a

rate monotonic framework by either running them when no periodic or sporadic

tasks are active, or by modeling an aperiodic server as a periodic task and choosing

an aperiodic task to run when the server runs; essentially the server is a placeholder

for the collection of aperiodic tasks.

Rate monotonic scheduling is a powerful tool for hard real-time systems, but it

has two drawbacks for firm real-time multimedia CPU scheduling. First, the highly

dynamic nature of a multimedia system makes it difficult to derive task models

that characterize real applications [3]. A multimedia application can be modeled

as a periodic task, but this model cannot capture variability in the application’s

actual resource needs, the relationship between application buffering and period,

or the structure of the application as a pipeline of dependent stages. Interactive

applications would seem to be sporadic tasks, but it is not clear how to determine

the minimum inter-arrival time between keystrokes or mouse events for modeling

purposes. Second, it restricts resource usage, preventing the system from being run

at full capacity. As mentioned, a rate monotonic schedule is only guaranteed to be

correct if the aggregate task load is less than 0.693; higher loads may be feasible,

but this is not certain without performing an offline analysis. Constraining the

load of a multimedia PC to be less than the theoretic load bound of 0.693, or even
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the average case load bound of 0.88, wastes a significant amount of resources, but

repeatedly performing the rate monotonic analysis for a constantly changing set of

applications is infeasible.

2.3.3 Earliest Deadline First

Earliest deadline first (EDF) schedulers were also proposed by Liu and Layland [37]

and, like rate monotonic schedulers, are frequently used in industrial and safety-

critical hard real-time systems. EDF is more dynamic and less restrictive than rate

monotonic. An EDF scheduler simply runs the application with the earliest dead-

line. This requires that the application itself inform the scheduler of its deadline—

this presents a problem for batch applications that have no deadlines, or at least

requires that some method exist for deriving a deadline for the application. Liu

and Layland showed that EDF is optimal in a limited sense: if any CPU scheduling

algorithm can meet the deadlines of all applications, then an EDF scheduler will

meet them. In other words, if it can be shown that it is simply possible to satisfy

the real-time requests of a set of applications, then scheduling the requests EDF

will satisfy them; this powerful result will be revisited later on. EDF’s limited opti-

mality is very useful for safety-critical hard real-time systems where offline analysis

and resource over-provisioning ensure that current resources are sufficient to meet

all application requirements.

A näıve approach for EDF multimedia scheduling would be for all applications to

simply inform the scheduler of their deadlines, and for the system to schedule them

EDF. This approach does not work well and the explanation has two parts. First,

a multimedia PC is a less controlled environment than a hard real-time system; it

runs an arbitrary mix of applications, with potentially arbitrary deadlines that it

may or may not be possible to meet. Second, EDF is not optimal in cases where it
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is not possible to meet all deadlines. It is easy to construct an example where all

but one deadline can be met, yet an EDF scheduler will miss all of them. These

factors can combine to produce a drastic decline in the quality of all applications

once their combined resource requirements reach a certain level.

The näıve approach can be improved by adding a feasibility test to ensure that

the schedule can actually meet all deadlines. One way to do this is for applications

to present time constraints, rather than simply deadlines, to the CPU scheduler.

The scheduler can then easily verify that admitting a new time constraint preserves

the feasibility of the schedule, and if it does not, the time constraint can be rejected

or some other action taken. A key problem with this approach is that it violates

nearly all the Principles of User Benefit from Chapter 1, in that it may reject a

more important time constraint because admitting it would not produce a feasible

schedule. Biyabani [14] solves this problem by associating an importance value

with each application, and repeatedly removing the least critical application from

the schedule until all remaining deadlines can be met. This method shifts resources

to more important real-time applications in accordance with Principles PUB4 and

PUB5; however, Principle PUB6 may still be violated, since less important ap-

plications can in fact be starved. Also, recomputing the schedule in this manner is

quadratic in the number of applications and so is computationally expensive.

An approach reminiscent of rate monotonic scheduling is to derive application

deadlines indirectly by modeling the resource usage of applications. For example, a

multimedia application modeled as a periodic task specifies its execution time and

period; the EDF scheduler uses this information to verify that the resulting schedule

is feasible, and if so, schedules the application using its periodic task deadline. A

number of existing multimedia CPU schedulers, such as that used in Nemesis [36],

are based on this approach. However, it shares many drawbacks with rate mono-

tonic scheduling: application requirements must be understood well enough to be
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modeled, and more significantly, user importance is not taken into account. Still,

the idea of deriving application deadlines in order to produce a particular real-time

system behavior is a powerful one; the problem is to generate the “right” set of

deadlines efficiently. Though it is not obvious at first, many proportional share

schedulers actually offer one solution to this problem. An overview of proportional

share schedulers is next, and the implementation of those based on virtual time will

be discussed in depth in Chapter 3.

2.3.4 Proportional Share

Proportional share CPU schedulers employ a single resource model for all applica-

tions in the system: they simply provide each application with a fraction of the

CPU. Such schedulers associate a share value with each application, and use this

value to determine what fraction of the CPU to give the application by approxi-

mating the ideal of perfect weighted fairness. Intuitively, this means that if the sum

of shares of all applications is n, and the sum of shares of all runnable applications

is m, then an application with a share of k should receive a CPU fraction of k/m

(which is never less than k/n). Though somewhat similar to the periodic task model

described above, the proportional share model is more flexible because it does not

depend on the pattern of CPU requests made by the application. Rather, since pro-

portional sharing simply provides applications with a rate representing a fraction of

the CPU, this means that the period with which the application runs is a function

of its CPU fraction and the size of its request. For example, if two applications

have the same share but are making CPU requests of different durations, the one

making smaller requests gets to run more often.

Proportional share schedulers have been proposed for both soft [17, 20, 45, 65,

66] and firm [60, 61] real-time systems. In soft real-time systems, the share of an
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application is regarded as a user-defined weight with no limit on its value. Since

an application’s rate depends on the sum of shares of the runnable processes, if

this sum can be arbitrarily large, then the actual rate of an application can become

arbitrarily small. Our inability to say anything definite about the application’s

real-time behavior in this case makes the system soft real-time. Still, a key benefit

of proportional sharing in this context is the firewall protection that it provides

between applications, in that an ill-behaved application can consume no more than

a proportion of the available resources. As examples, SMART [45, 46] assumes an

equal share for all applications by default, and lets the user adjust them manually if

he or she prefers some other balance. BVT assumes that the system administrator

will configure a table of share values for different applications [17].

To produce a reservation-based system using proportional sharing, the number

of outstanding shares n can be capped, or the share k of each multimedia appli-

cation can be recalculated whenever n changes in order to keep the value of k/n

constant [60]. Doing so enables the system to give an application a definite mini-

mum CPU rate, and an application may be able to run at a higher rate if there are

extra CPU cycles available. In order to be suitable for firm real-time scheduling, the

underlying proportional share algorithm must also be formally analyzed to verify

its real-time properties, as was done for EEVDF [61].

We argue that a multimedia PC using a reservation-based CPU scheduler can

provide the user with the best overall experience. First, unlike rate monotonic,

the relative simplicity of the proportional share model reduces the complexity of

modeling applications to choosing a single number: the reservation. Second, unlike

an EDF system in which each application is scheduled based on its time constraints,

misbehaving applications are firewalled and each application receives its minimum

CPU fraction of k/n regardless of the behavior or deadlines of the other applications

in the system. Third, unlike an importance-based fixed priority scheduler, each
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application is provided with a guaranteed rate and so no application will starve.

Finally, the resource requirements of batch, interactive, and multimedia applications

can all be met with reservations. A batch application make progress based on its

reservation. The response time of an interactive application varies inversely with its

reservation. And a multimedia application uses the fine-grained promises furnished

by its reservation to meet its time constraints.

2.4 Related Work

In Chapters 3 and 4, we describe how the Tyche CPU scheduling algorithm is

built on the theoretical framework of proportional share schedulers. First, we sur-

vey additional related work in CPU scheduling, proportional share schedulers, and

multimedia systems.

2.4.1 Timesharing

Large-scale timesharing systems support on the order of hundreds of simultaneous

users, and traditionally focus on maximizing aggregate throughput, maintaining

approximate fairness between applications, and providing good interactive response

times; for overviews of timesharing CPU scheduling results, see McKinney [24] and

Kleinrock [32]. The round-robin with multilevel feedback scheduler, also called a

decay usage scheduler, described by Corbató et al. in [15] provided the ideas under-

lying the CPU schedulers of many workstation operating systems. The scheduler

provides multiple round-robin priority queues and selects the process at the front

of the queue with highest priority to run next. After running, the process is moved

to a lower priority queue based on its measured CPU consumption, and tasks that

have not run for a while have their priorities reset to their original value. This

strategy provides better interactive behavior to processes that use less CPU.
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UNIX systems employ decay usage scheduling for user tasks, and give strictly

higher priority to processes blocked in the kernel in order to minimize the time that

shared resources are held [2]. Nieh et al. [44] showed that the timesharing CPU

scheduler of SVR4 UNIX, which was augmented with real-time static priorities to

support multimedia, was not acceptable for scheduling a mix of multimedia, in-

teractive, and batch tasks; the key problems were starvation of other tasks when

multimedia tasks were run at real-time priority, and pathological interactions be-

tween the decay usage mechanism and multimedia tasks that both require timely

response and consume large amounts of CPU cycles.

2.4.2 Packet Scheduling

Many proportional sharing schedulers are based on the abstraction of virtual time.

The original idea of using virtual time for scheduling comes from the distributed

synchronization work of Jefferson [26], who coined the phrase “virtual time” and

proposed the simple scheduling rule of always executing those processes whose local

virtual clocks are farthest behind. Packet scheduling was one of the first appli-

cations of proportional share scheduling using virtual time. Weighted Fair Queu-

ing (WFQ) [16] described the ideal of perfect weighted fairness, and provided the

first implementation of a virtual-time based proportional share packet scheduler.

PGPS [48] is essentially the same algorithm as WFQ, but was discovered indepen-

dently; it formalizes the perfect weighted fairness ideal into the GPS model that

will be discussed and expanded in Chapter 3. Other proportional share packet

schedulers differ in how closely they approach the ideal of perfect weighted fairness

expressed by the GPS model. Virtual Clock [70, 71] assigns virtual timestamps to

packets in a manner similar to WFQ, but does not approximate perfect weighted

fairness as well because it allows inactive flows to “save credits”; Virtual Clock
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was extended to give better guarantees in [63]. The motivation of Worst-case Fair

Weighted Fair Queuing (WF2Q) [13] is that a Weighted Fair Queuing packet sched-

uler can finish sending packets long before they have been completely sent in the

GPS model. WF2Q defines an eligible packet as one that has begun to be sent in

the GPS model, and only sends eligible packets in the real system; the resulting

system is shown to conform even more closely to perfect weighted fairness. The

follow-on algorithm, WF2Q+ [12] provides the same theoretic bounds with a more

efficient implementation.

Work in network packet scheduling also demonstrates the potential for fine-

tuning the behavior of proportional share schedulers. Generalized Fair Queuing

(GFQ) [22] contains an idea similar to the share shifting mechanism that will be

discussed in Chapter 4. GFQ is a fair share packet algorithm that permits differ-

ent weights for individual packets within a flow. A flow can temporarily increase

its weight for the duration of one packet as long as this does not cause the server

capacity to be exceeded. This dissertation goes far beyond the GFQ work, which

was mainly theoretical, was not focused on multimedia CPU scheduling, and did

not actually describe any mechanisms (such as share shifting) by which an imple-

mentation could avoid over-allocating the server. The H-FSC packet scheduler [62]

is a fair share scheduler that decouples bandwidth from delay for real-time packet

flows. Note that in packet scheduling, the working definition of a “real-time” flow is

not that it has deadlines, but simply that a bandwidth reservation can be made for

it; the H-FSC scheduler supports real-time flows that want to bound the end-to-end

delay within the network. It is not clear how H-FSC’s ideas could be applied to

CPU scheduling to guarantee that important multimedia time constraints are met.
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2.4.3 Multimedia CPU Scheduling

Lottery and stride scheduling [65] were among the earliest proportional share CPU

scheduling algorithms, but were not based on virtual time. The EEVDF [61] sched-

uler formed the basis of a hard real-time operating system, has been proved to ap-

proximate an ideal model of perfect weighted fairness as closely as is theoretically

possible, and can be implemented efficiently; the prototype of Tyche implements

proportional sharing similarly to EEVDF. Start-time Fair Queuing [20] is another

virtual-time based proportional share CPU scheduling algorithm proposed for mul-

timedia systems, but it does not optimally approximate the model like EEVDF.

The idea of using virtual time to track an ideal model will play a major role in the

derivation of Tyche.

The Rialto CPU scheduler [30] performs real-time proportional sharing but is

not implemented using virtual time. An “activity” in Rialto reserves an execution

rate by specifying a slice (i.e., a cycle amount) and a period. Rialto then computes

a fixed schedule that provides each activity with the number of cycles specified in

its slice within each period, and repeatedly executes this schedule. The schedule

may contain open slots that real-time activities needing extra cycles can claim to

meet time constraints; otherwise the slots are fairly distributed among all activities.

Allowing real-time processes to claim unused slots can address Principle PUB5 by

providing extra cycles directly to multimedia applications that need them to meet

their time constraints. However, it does not re-allocate slots based on importance

when no free slots are available, and so does not directly address Principles PUB2

and PUB4. Rather, the Rialto system relies on a resource manager to adjust CPU

reservations in this case.

The SMART multimedia CPU scheduler [45, 46] provides one of the earliest

examples of modifying a proportional share scheduler to explicitly account for both
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application importance and multimedia time constraints; this is the goal of Tyche

as well. SMART assigns a value tuple to each CPU request that usually corresponds

to its virtual finish time in the GPS model; a request with an earlier virtual finish

time has a higher-ranking value tuple. SMART also incorporates the notion of

importance into the value tuple, so that the request of a more important application

always has a higher-ranking value tuple than the request of a less important one.

It executes requests by descending value tuple rank until the request heading the

ready queue has a deadline (i.e., is a time constraint). It then forms a candidate

set consisting of time constraints with a higher-ranked value tuple than the highest

ranked request without a deadline. The candidate set is reordered EDF based on

deadlines, using a feasibility test to ensure that a lower-ranked time constraint does

not cause a higher-ranked one to miss its deadline. This procedure ensures that at

least as many deadlines are met as in the original schedule (based on proportional

sharing), while still providing batch applications with identical service. SMART

is a soft real-time scheduler in that, to our knowledge, no proofs or analysis of its

real-time properties have been published. Also SMART was designed to meet a

different set of requirements than the Principles of User Benefit listed in Chapter

1; as a result, it may violate Principle PUB6 since a more important application

can starve a less important one.

The basic insight of the Borrowed Virtual Time (BVT) scheduler [17] is that both

interactive and multimedia applications are latency sensitive, in that satisfying their

CPU requests earlier rather than later may improve the overall system performance.

The core of the BVT scheduler is a proportional share algorithm that stamps each

request with a virtual timestamp. BVT then supports latency sensitive processes

with a mechanism called warping (the idea of warping virtual time also originated

with Jefferson [26]). Some processes provide a warp factor that represents a constant

to be subtracted from the timestamps of its tasks. When warping is activated for a
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process (via a system call), the effective timestamp of its request is lowered by the

warp factor, causing the request to move up in the ready queue and run sooner than

it otherwise would have. The BVT scheduler interface also provides parameters to

control the frequency and duration of warping. Though warping is a simple addition

to a proportional share scheduler, it is not clear exactly what kinds of behaviors

BVT can provide since, like SMART, we are unaware of any proofs of BVT’s real-

time properties. It would appear that multiple warped tasks can interact with each

other in undesirable ways. More importantly, to our knowledge no one has described

how to set the various warp parameters for all applications in order to produce an

overall system behavior in line with the Principles of User Benefit. Others have

noted that schedulers that provide many knobs for fine-tuning behavior are nearly

impossible to use successfully [44].

2.4.4 Multimedia Systems

In the Nemesis [36] operating system, a reservation-based CPU scheduler, adaptive

multimedia applications, and a Quality of Service Manager cooperate to provide the

user with good value. Each application domain reserves a fraction of the CPU by

specifying its slice and period to the CPU scheduler, and also indicates whether it

will accept additional cycles. The Nemesis CPU scheduler then derives deadlines for

application from their reservations and schedules them Earliest Deadline First, and

addresses Principle PUB1 by providing unused cycles to applications that request

them. Nemesis runs adaptive multimedia applications that can modify their re-

source requirements to match their domain’s reservation. Finally, a feedback-based

Quality of Service Manager can modify the shares of domains. The QoS Manager

combines a user-specified policy with its observations of application performance,

and then dynamically redistributes shares among application domains as it sees fit.
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To our knowledge, the Nemesis system is one of the most complete firm real-time

multimedia systems. However, like Rialto, their CPU scheduler does not directly

address Principles PUB2 and PUB4, leaving the reallocation of CPU cycles in

overload solely to higher-level mechanisms.

We are unaware of a rate-adjusting feedback controller that explicitly tries to

choose shares that provide the user with the best value possible, as outlined in

Chapter 1, but we describe two fairly promising approaches. Steere et al. [59]

present a feedback controller that strives to allocate the proper share to real-time,

best effort, and what they call “real rate” processes. Multimedia tasks fall into

the category of “real rate”. Their scheme uses a rate monotonic scheduler with

a feedback controller to adjust the proportion and period of a process based on

progress metrics, primarily queue length. Whereas a video decoder process is often

modeled as a real-time process with deadlines that need to be met, here it is regarded

as a producer/consumer problem: the consumer (display device) is draining the

queue at a fixed rate and the system should dynamically adjust the rate of the

producer (video process) so that the queue does not become empty. In effect,

deadlines need not be considered as long as there are frames in the output queue

ready to be displayed. A key problem with their approach is that, in overload,

the controller does not take importance into account, but simply “squishes” (their

word) all current allocations to free capacity; this approach may end up reducing the

quality of the application that the user cares about. It also may not work well for

latency-sensitive multimedia applications that employ a very short queue between

the application and the display device: a one-buffer queue is either full or empty,

and it is not clear how their controller can use the queue state to adjust shares in

this case. Lu et al. [38] describe a feedback controller that works in conjunction with

an EDF scheduler to maintain a specific deadline miss percentage. We argue that

the deadline miss percentage may not be a good estimate of the overall value that
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the system is providing the user in overload; as long as an important application

is meeting its deadlines, the user may be perfectly satisfied if an unimportant one

misses many. Though existing feedback controllers have limitations, we believe

that the Tyche CPU scheduler can help conceal these limitations from the user by

providing important applications with better quality in overload.
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Chapter 3

Methodology

Both hard and firm real-time systems derive their predictability from careful anal-

ysis of the algorithms on which they are based. This chapter contributes a gen-

eral analytic methodology for producing new real-time scheduling algorithms based

on proportional sharing. The methodology consists of two steps: mathematically

describing modifications to the ideal behavior of a proportional share scheduling

algorithm, and then implementing a system that can be shown to track this mathe-

matical model in real time. The specific mathematical model underlying the Tyche

CPU scheduler, and the algorithm that implements it, will be described in detail

in Chapter 4. We believe that the techniques in this chapter extend beyond Ty-

che, and can form the basis of a class of real-time scheduling algorithms based on

proportional sharing.

This chapter lays the analytic foundation for Tyche in three stages. First, we

present the mathematical model describing the ideal behavior of a proportional

share scheduler, and prove results about the real-time behavior of systems that uses

virtual time to track this model. These results are already known, but our new

proof method leads to important insights into the nature of virtual time. Second,

we describe in detail the real-time promises that such a system can offer. Third,
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we extend the mathematical model, relaxing its restrictions in a manner required

to support Tyche. Finally, we prove that this extended model can also be used as

the foundation of a real-time system based on virtual time.

3.1 GPS Model

Weighted Fair Queuing (WFQ) [16] was the first proportional sharing algorithm

implemented using the abstraction of virtual time. This section describes the model

underlying WFQ and other schedulers based on virtual time, and sketches how

such schedulers are implemented. It also discusses their real-time capabilities, in

particular, how they can make fine-grained real-time promises to applications. The

presentation of the GPS model in this section is largely our own [6, 9], but is based

on those by Goyal and Vin [21, 22] and Jeffay [61].

As mentioned in Chapter 2, a proportional share scheduler is working to approx-

imate an ideal model of perfect weighted fairness. Historically this model is referred

to as the Generalized Processor Sharing model or GPS [48]. A proportional share

scheduler successfully approximates the GPS model by executing individual quanta

of known maximum duration (i.e., timeslices), belonging to applications, so that

each quantum finishes no later than the time predicted by the model. Though the

real system is discrete in that it only executes one quantum at a time, the model

itself is fluid, meaning that at any instant multiple quanta can be receiving service

simultaneously in the model. In other words, the model mathematically describes

the real-time execution of quanta using the unachievable ideal of perfect weighted

fairness, and discrete PS algorithms try to keep up with the model in real time.

The GPS model can be given a concise mathematical definition as follows.

A task is an application that submits a series of quanta (jobs) to the system.

Each task has either zero or one quantum executing at any particular time, but as
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mentioned above, quanta from multiple tasks simultaneously execute in the model.

A quantum qi,m is the mth quantum submitted by task i. Often we drop the m

when it is not important, indicating by qi the current quantum of task i. A quantum

is defined by its arrival time, arr(qi); its execution time, cyc(qi); and an optional

deadline, dl(qi).

At all times, each of the n tasks in the system has an associated share value.

The share of a task can change over time but is always a constant for a particular

quantum. Let S(qi,m) be the share associated with quantum qi,m.

The GPS model describes quanta arriving, executing with rates determined by

their share values, and then finishing. The GPS start time (GST) and GPS

finish time (GFT) of a quantum represent its start and finish times in the GPS

model. The GST is subject to the constraint that each task can have only one

quantum receiving service at any time t, and so before starting a new quantum, the

task must wait for its previous quantum to finish. Formally:

GST (qi,m) = max(arr(qi,m), GFT (qi,m−1)) (3.1)

Let A(t) be the set of active quanta at time t. A quantum is active at time t

if it is executing in the model at this time. We also say that a task is active at a

certain time if it has an active quantum. So:

qi,m ∈ A(t) ⇐⇒ GST (qi,m) ≤ t ≤ GFT (qi,m) (3.2)

Without loss of generality, let each share be a value between 0 and 1, and let

the sum of shares of all executing quanta be less than or equal to 1:

∀t,
∑

q∈A(t)

S(q) ≤ 1 (3.3)
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The GPS model expresses the ideal of perfect weighted fairness within the con-

straints outlined above. Let Ci(t) be the total number of cycles received by task i

before time t. Each task in the fluid GPS model executes at a continuous rate, and

the rate at which the quantum of task i executes at time t in the model is therefore

the rate of change of Ci. This rate is determined by task i’s own share, the shares

of all other simultaneously executing quanta, and the CPU speed RCPU :

C ′
i(t) =

S(qi)
∑

q∈A(t) S(q)
× RCPU (3.4)

From the above equation, the GPS finish time (GFT) of a quantum is defined

by the amount of time after the quantum starts that the task has accumulated

enough cycles to finish it. That is, in general:

cyc(qi) = Ci(GFT (qi)) − Ci(GST (qi)) =

∫ GFT (qi)

GST (qi)

C ′
i(t) (3.5)

We can expand the integral on the right-hand side of Equation 3.5 to find a

quantum’s GFT by observing that the function C ′
i(t) only changes value at discrete

events, namely when the set of active tasks changes or when their shares change.

Starting at the quantum’s GST, we can calculate its GFT by figuring out when it

will have received enough cycles to meet its execution time if they are supplied at

the rate given in Equation 3.4. Formally, we define an event as a quantum starting

or finishing in the model, or a task changing its share. Let t0 ≤ t1 ≤ ... ≤ tn be

times at which events occur in the model while the quantum qi is running, with

t0 = GST (qi) and tn = GFT (qi). Then the quantum qi is finished when:

cyc(qi) = RCPU × S(qi) ×
∑

e=0..n−1

(te+1 − te)
∑

q∈A(te)
S(q)

(3.6)
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In other words, to find the quantum’s GFT, we must solve Equation 3.6 for

tn. The intuition behind the above equation is that we are summing up the areas

of boxes which represent specific amounts of cycles. The boxes have a width of

the actual CPU rate of the task and height of the time between events; the quan-

tum finishes when the sum of their areas equals the execution requirement of the

quantum.

The GPS model describes the execution of a system where quanta meet deadlines

(their GPS finish times) in real-time. That is, suppose the GPS finish times were

known in advance, and each quantum q had its deadline set to its GPS finish

time, i.e., dl(q) = GFT (q). A key insight is that, because of the EDF optimality

result [37] summarized in Chapter 2, executing the quanta set EDF would produce a

system with the real-time behavior described by the model. (This will be quantified

and proved later in this chapter.) The problem is that, as Equation 3.6 shows,

knowing the GFT of a quantum requires a priori knowledge of all share changes

and quantum arrivals that will occur while it is active in the model. That is, the

GFT of a quantum depends on its rate, which in turn depends not only on its own

share, but the shares of all active tasks. Since in a real system tasks can start, stop,

block, and awaken at arbitrary times, and task shares can change between quanta,

it is not actually possible to calculate the GFT of a quantum according to the above

equations.

3.2 Virtual Time and GPS

The WFQ scheduler applies the abstraction of virtual time to the GPS model to

produce a parallel model that we will call the Virtual GPS (VGPS) model. The

purpose of introducing virtual time is to establish an ordering between tasks based

on their GFTs, much like its original use by Jefferson to order events in a distributed
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system [26]. Since virtual time is used to impose a temporal ordering, its important

feature is the way that it changes over time. We define virtual time mathematically

to flow at a rate relative to clock time and the shares of the set of active tasks. Let

v(t) express the current virtual time at time t; then we define the change in virtual

time as:

dv

dt
=

1
∑

q∈A(t) S(q)
(3.7)

Note that the complexity of Equation 3.4 is moved into the virtual time function;

virtual time speeds up and slows down as the set of active tasks changes or their

shares change. We can express the virtual rate of a quantum qi by combining Eqs.

3.4 and 3.7 as follows:

dCi

dv
=

dCi

dt
×

dt

dv
=

S(qi)
∑

q∈A(t) S(q)
× RCPU ×

∑

q∈A(t)

S(q) (3.8)

The summations cancel each other out, leaving us with:

dCi

dv
= S(qi) × RCPU (3.9)

Define the virtual start time (VST) and the virtual finish time (VFT) of

a quantum as the virtual times at which it starts and finishes in the model. That is,

V ST (q) = v(GST (q)) and V FT (q) = v(GFT (q)). Then we can rewrite Equation

3.1 as:

V ST (qi,m) = max(v(arr(qi,m)), V FT (qi,m−1)) (3.10)

The virtual time abstraction makes it straightforward to calculate the virtual

finish time of a quantum. The virtual time at which a quantum q will have completed

execution in the model can be expressed quite simply as:
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Figure 3.1: VGPS model, GPS model, and resulting scheduling order

V FT (q) = V ST (q) +
cyc(q)

S(q) × RCPU

(3.11)

WFQ approximates the model by assigning virtual finish times, also called vir-

tual timestamps, to quanta as in Equations 3.10 and 3.11. To do this, it requires

only a small amount of state, namely, a global virtual clock and a virtual clock

for each task. Equation 3.10 indicates that the virtual start time of a quantum

belonging to a previously inactive task depends on the virtual time at which it

arrives. Therefore WFQ maintains a global virtual clock that changes according

to Equation 3.7. Likewise, for an active task, the virtual start time of a quantum

depends on the virtual finish time of the previous quantum; WFQ tracks this with a

per-task virtual clock that contains the last quantum’s VFT. When a new quantum

arrives, the system simply needs to compare the global and per-task virtual clocks
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to calculate its virtual start time. Then the virtual finish time is derived using the

virtual start time according to Equation 3.11.

To make the discussion more intuitive, Figure 3.1 illustrates the order that

quanta (timeslices) execute in the two parallel models and a real system, for three

tasks with shares of 1/8, 1/4, and 3/8. The left part of the figure shows the rep-

resentation of how quanta for the three tasks execute in the VGPS model, where

they receive a fraction of the CPU equal to their shares. Note that the CPU is not

fully reserved and, in the VGPS model, the unallocated capacity is shown just to

the right of the task quanta. The center part shows the quanta executing in the

GPS model; in this model, the quanta are allowed to consume the entire CPU, and

so the three tasks continuously receive 1/6, 1/3, and 1/2 of the CPU respectively.

Note that since the timeslices are all the same size, the area of each box in both the

VGPS and GPS models is the same. Finally, the right side of the figure shows how

a real system using WFQ would execute the quanta in order of increasing virtual

finish times. One key feature of the real system is that it finishes each quantum no

later than the quantum finishes in the GPS model; for example, the quantum la-

beled i finishes at the same time in the model and the real system, and the quantum

labeled d finishes earlier in the real system than it does in the model. We formalize

this result in the next section.

3.3 Theoretical Results for GPS Model

We prove that schedulers which track the GPS model using virtual time have quan-

tifiable real-time behavior, making them suitable for use in multimedia systems.

Though the result is already known, our proof method leads to a valuable insight

about the nature of virtual time that we will exploit when designing the Tyche

scheduler. First, we define several terms.
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A GPS system is a system that approximates the GPS model using virtual

time. A GPS system stamps arriving quanta with their virtual finish times as in

Equation 3.11, tracks virtual time as in Equation 3.7, and executes the set of quanta

in order of increasing virtual timestamps. A system running a WFQ scheduler is

an example of a GPS system.

The real-time behavior of a proportional share scheduler can be quantified by

bounding its lag in both positive and negative directions, representing how much

later or earlier a quantum can complete in the real system versus in the model. We

care primarily about positive lag, since that impacts the ability of the scheduler to

meet real-time deadlines in the running system. In other words, if a GPS system

never lags the GPS model by a positive amount, and a particular deadline is met

in the model, then it will be met in the GPS system too.

Systems A and B are equivalent if, given the same workload of quanta arriving

in time, both systems execute the quanta in exactly the same order. It should be

obvious that two equivalent systems have exactly the same real-time behavior.

A preemptive system obeys the invariant that the quantum with highest pri-

ority (e.g., the lowest virtual timestamp or deadline) always runs immediately; that

is, if one quantum is running and another with a higher priority becomes eligible to

run, the former is preempted in favor of the latter. Conversely, a nonpreemptive

system is one that runs quanta for their full duration, even if a quantum with a

higher priority enters the system.

Next, we state the EDF optimality result proved by Liu and Layland [37]. They

establish that, given a set of quanta q with associated deadlines dl(q) and execution

cycles cyc(q), if it is possible to meet all the quantum deadlines:

• A preemptive system running the quanta set EDF would meet all deadlines

dl(q)

53



• A nonpreemptive system running the quantum set EDF would miss no deadline

by more than the maximum run time of any quanta, i.e., max(cyc(q)/RCPU)

With this background, we prove the following Theorem and Corollary. The result

in the Corollary was first proved by Parekh and Gallager [48] for packet scheduling,

which is necessarily nonpreemptive; we have adapted their result for preemptive

CPU scheduling, with the assumption that preemption itself has zero cost. We first

presented an outline of our proof in [9].

Theorem 3.3.1. Any preemptive GPS system never lags the GPS model by a pos-

itive amount.

Proof. The proof has two steps:

1. We show that it is possible to meet the GPS finish times (GFTs) of all quanta,

and therefore executing the quanta EDF with dl(q) = GFT (q) will meet all

GFTs

2. We show that executing quanta in order of increasing virtual timestamps is

equivalent to executing them EDF with dl(q) = GFT (q)

The GPS finish times are derived from a model that describes quanta execut-

ing in real time and finishing by their GFTs. Therefore, the GPS model itself

demonstrates that it is possible to meet a particular set of deadlines for the quanta,

namely, dl(q) = GFT (q). It does not matter that the GPS model is impractical to

implement, but just that it provides a description of one way to meet the quanta

deadlines. Therefore, by the EDF optimality result, a preemptive EDF system

running quanta with dl(q) = GFT (q) would meet all GPS finish times.

Second, executing quanta in order of increasing virtual timestamps is equivalent

to executing them EDF using dl(q) = GFT (q) because, by the definition of virtual
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time, dv/dt > 0. Consider any two quanta q1 and q2, and let GFT (q1) and GFT (q2)

be their GPS finish times in the model. Suppose that GFT (q1) > GFT (q2). By

definition, the virtual time at which quantum q finishes in the model is V FT (q) =

v(GFT (q)). Since dv/dt > 0, v(GFT (q1)) > v(GFT (q2)), and hence, V FT (q1) >

V FT (q2). A similar argument applies for GFT (q1) < GFT (q2) and GFT (q1) =

GFT (q2). Since a GPS system (using virtual timestamps) is equivalent to an EDF

system using GPS finish times, a preemptive GPS system meets all GPS finish

times.

Corollary 3.3.2. Any nonpreemptive GPS system never lags the GPS model by

more than one maximum-sized quantum.

Proof. The argument is the same as for Theorem 3.3.1, but we apply the EDF

optimality result for nonpreemptive systems.

3.4 Real-time Promises

The ability of a proportional sharing scheduler to track the GPS model in real

time enables it to make promises to individual quanta. A promise represents the

latest time at which a quantum will finish execution in the real system; if the

quantum has a timing constraint and the constraint falls after this promise, then

the timing constraint will be met. The significance of a promise is that it gives an

application advance knowledge of the worst-case real-time behavior of the system.

The promise itself is a function of the application’s share, its quantum’s duration,

and the theoretical properties of a specific proportional sharing scheduler; it is not

conditional upon any assumptions about the workload.

The promises that the scheduler can make applications are derived from the

finish times of quanta in the GPS model, subject to two considerations. First, since
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a promise accounts for the worst-case behavior of the system, it is made under the

assumption that the application may receive its minimum possible rate in the future.

At any time t between when a quantum starts and finishes in the GPS model, it has

received some amount of cycles in the model and still has some cycles remaining to

execute. If the quantum has started executing in the model at time t, the number

of cycles that it has accumulated is simply given by Ci(t)−Ci(GST (qi)) and so the

number of cycles the quantum has left is cyc(qi) minus this amount. Otherwise the

quantum has accumulated no cycles.

The worst-case finish time (WCFT) of a quantum at time t is based on the

assumption that, for the remainder of its execution, all shares will be assigned and

all tasks will be active; this means that the sum of all active shares will be 1. In

this case the quantum q would receive its minimal rate in the model, specifically

S(q) × RCPU , which is exactly the virtual rate of Equation 3.7. If the quantum is

not yet executing at time t, then the previous quantum for the task has not yet

finished and so the quantum must wait for it to complete. Thus the worst-case

finish time of quantum qi,m at time t is:

WCFT (qi,m, t) =























WCFT (qi,m−1, t) +
cyc(qi,m)

S(qi,m) × RCPU

: t < GST (qi,m)

t +
cyc(qi,m) − (Ci(t) − Ci(GST (qi,m))

S(qi,m) × RCPU

: t ≥ GST (qi,m)

(3.12)

Note that, as time passes, the above equations indicate that the worst-case finish

time for a quantum may become earlier. This is because the system has accurate

knowledge of what has occurred during the elapsed interval and so does not need

to make worst-case assumptions.
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The promise of a quantum is typically calculated when it arrives in the system;

in the model, this time can be no later than the GPS start time of the quantum.

When quantum q starts executing in the model, the time is t = GST (q). At this

point in time, the quantum’s WCFT is simply:

WCFT (q,GST (q)) = GST (q) +
cyc(q)

S(q) × RCPU

(3.13)

The similarity between Eqs. 3.13 and 3.11 illustrates the intimate relationship

between promises and virtual time: in essence, virtual time tracks promises made

to tasks, while the GPS model tracks actual usage. Recall that the reason we apply

virtual time to the GPS model is to allow the system to predict the future virtual

finish time of a quantum. Another way to think about this is that the VGPS model

keeps track of how CPU capacity is allocated in the future, even though the future

GPS model is not known because it is dependent on the workload. Mathematically,

this means that the worst-case finish time of a quantum can be calculated quite

simply using virtual time:

WCFT (q, t) = t + V FT (q) − v(t) (3.14)

The second consideration to take into account when making a promise is to

adjust it for the limitations of the system according to Theorem 3.3.1 and Corollary

3.3.2. A preemptive system has a positive lag bound of zero, and a nonpreemptive

system has a positive lag bound of a maximum-sized quantum. Therefore, if δ is

the positive lag bound for the system, then the system promises to finish quantum

q by a certain time:

promise(q) = WCFT (q) + δ (3.15)
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When talking about how real systems make promises, we will usually assume a

preemptive system and so ignore the factor δ; in other words, we assume promise(q)

equals WCFT (q). The discussion can easily be adapted to a nonpreemptive system

by adding the appropriate factor to the promise.

3.5 Extended GPS Model

The standard GPS model presented in Section 3.1 is not powerful enough to provide

a foundation for the Tyche CPU scheduler. As described fully in Chapter 4, Tyche’s

ideal model requires the ability to change the share of a quantum while it runs,

while the GPS model assumes that the share of each quantum remains constant.

Therefore we extend the GPS model by relaxing the restriction that a task’s share

is constant during the execution of a single quantum; instead, we allow the share

of task i to change at any time. This extension requires a number of changes to

the equations of Sections 3.1 and 3.2. Let Si(t) be the share of task i at time t;

essentially, the equations describing the GPS model change by replacing the share

of a quantum, S(qi), with Si(t). Note that the end result is that, as long as all

of the share changes that will affect the quantum qi of task i are known when the

quantum arrives in the system, it is still possible to calculate its virtual finish time

and promise.

We define the Extended GPS (EGPS) model as follows. An active task is still

defined as one that has a quantum executing in the model, but now it is convenient

to refer to the set of active tasks rather than active quanta. Therefore let A(t) be

the set of active tasks. The rate at which an active task i executes in the EGPS

model at time t is now:
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C ′
i(t) =

Si(t)
∑

k∈A Sk(t)
× RCPU (3.16)

Calculating the GFT for a quantum in the extended model becomes slightly

more complex. Note that in the EGPS model shares can change at any time, but

are constant between changes. Therefore, in order to know the GFT, we also need

to know the clock times at which shares change. Let t0 ≤ t1 ≤ ... ≤ tn be times at

which events occur in the model while the quantum qi is running, with t0 = GST (qi)

and tn = GFT (qi). Then, analogously to Equation 3.6, the quantum qi is finished

when:

cyc(qi) =
[

Ci(t)
]tn

t0
= RCPU ×

∑

e=0..n−1

(te+1 − te) × Si(te)
∑

k∈A(te)
Sk(te)

(3.17)

Now we apply virtual time as before to create the parallel VEGPS model. Virtual

time is defined as:

dv

dt
=

1
∑

k∈A Sk(t)
(3.18)

And so, recalling Equation 3.9, the virtual rate of task i simplifies to:

dCi

dv
= Si(t) × RCPU (3.19)

The quantum’s virtual finish time is calculated similarly to Equation 3.17, but

depends on knowing the virtual times that shares change. Let v0 ≤ v1 ≤ .. ≤

vn be the times at which the share of task i changes, with V ST (qi) = v0 and

V FT (qi) = vn. Also, let Si(v) be the share of task t as a function of virtual time

rather than clock time. During each of the sub-intervals between share changes, the

task executes at a constant virtual rate. Therefore, it is straightforward to calculate

the virtual time at which the quantum will finish by solving for vn:
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cyc(qi) = RCPU ×

∫ vn

v0

Si(v) = RCPU ×
∑

e=0..n−1

(ve+1 − ve) × Si(ve) (3.20)

Finally, a task’s worst-case finish time in the EGPS model can be calculated

based on the virtual finish time in the VEGPS model, as described in Equation

3.14. In the worst case, the rate Si(t)×RCPU that a task runs at time t is still equal

to its virtual rate Si(v(t)) × RCPU . Under the worst-case assumption that a task

receives no more than its guaranteed rate, dv/dt = 1. This means that the share

changes in virtual time describe equal intervals in real time in the worst case and

so the calculation of worst-case finish time remains the same.

3.6 Theoretical Results for EGPS Model

We define an EGPS system as one that tracks virtual time as in Equation 3.18,

timestamps quanta with their virtual finish times as in Equation 3.20, and executes

the quanta in order of increasing virtual timestamps. We provide a theorem and

corollary for EGPS systems analogous to that proved for GPS systems in Section

3.3.

Theorem 3.6.1. Any preemptive EGPS system never lags the EGPS model by a

positive amount.

Proof. The proof of Theorem 3.3.1 does not depend on the GPS model’s restriction

that the share of a task in the GPS model is constant while executing a single

quantum. Therefore the proof is the same.

Corollary 3.6.2. Any nonpreemptive EGPS system never lags the EGPS model by

more than one maximum-sized quantum.
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Proof. Proof is the same as Corollary 3.3.2.

Next, suppose we modify the way an EGPS system chooses the next quantum

to execute as follows. The EEVDF [61] and WF2Q[13] schedulers define a quantum

as eligible if the current virtual time is no less than its virtual start time, and

choose to execute the eligible quantum with the earliest virtual timestamp. When

tracking the GPS model, this technique has been shown to improve the negative lag

of quanta, meaning that the resulting system more closely tracks the model. This

technique can also be used in EGPS systems as proved next.

Theorem 3.6.3. Any preemptive EGPS system that schedules only eligible quanta

never lags the EGPS model by a positive amount.

Proof. The observation is that the EGPS model actually provides a description of

how to execute only eligible quanta in order to meet their EGPS finish times. By

the definition of virtual time, a quantum that is eligible but not yet finished is

executing in the EGPS model, and vice versa. Therefore the argument of Theorem

3.3.1 establishes this result as well.

Corollary 3.6.4. Any nonpreemptive EGPS system that schedules only eligible

quanta never lags the EGPS model by more than one maximum-sized quantum.

Proof. Proof is the same as Corollary 3.3.2.

Finally, we prove a result that addresses the problem of implementing an EGPS

system. One potential issue for a system trying to approximate an EGPS model

is that it is cumbersome to calculate the flow of virtual time in Equation 3.18.

However, the system needs to know the current virtual time in order to assign

timestamps to quanta as in Equation 3.20. The WF2Q+ scheduler [12] simplifies

the process of tracking virtual time by estimating the current virtual time as follows.

Let t be the time of an event, t0 be the time of the last event, and v(t0) be the
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estimated virtual time at time t0. Also, let R(t) be the set of all quanta available to

run in the real system at time t. Then the estimated virtual time at t is calculated

as:

v(t) = max(v(t0) + (t − t0),minq∈R(t)V ST (q)) (3.21)

In words, the new virtual time is the greater of the old virtual time plus the

elapsed clock time, and the minimum virtual start time of all quanta in the system.

The system tracks the current virtual time according to the above function and

assigns virtual timestamps using Equation 3.20.

The WF2Q+ scheduler attempts to approximate the standard GPS model, as

does WFQ. WF2Q+ combines virtual time estimation with choosing only eligible

tasks to execute, and it has been shown that WF2Q+ offers fairness superior to

WFQ. The question is, can a system based on the EGPS model leverage the tech-

niques of WF2Q+ and still make real-time promises?

Let a VT system be a system that assigns virtual timestamps to quanta as in

Equation 3.20 and executes eligible quanta in order of increasing virtual timestamps.

Such a system can calculate the flow of virtual time in any way it chooses, as long

as virtual time does not flow backward (i.e., dv/dt ≥ 0) and the sum of task shares

at all times is no greater than 1. It is clear that an EGPS system which executes

eligible quanta is also a VT system. The following theorem demonstrates that VT

systems exist which are not EGPS systems, but that can make real-time promises

based on virtual time.

In order to simplify the result, the theorem assumes a virtual machine that,

for each quantum, waits until that quantum becomes eligible before providing the

task with the promise for that quantum. One benefit of this behavior is that it

allows the virtual machine to provide the task with the earliest promise possible
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for the quantum. Since a VT system executes only eligible quanta, and a quantum

receives its promise as soon as it becomes eligible, it will receive the promise before

it is chosen to execute. In the following theorem, promises are expressed based on

t(V ST (q)), indicating the clock time at which the virtual start time of the quantum

q occurs.

Theorem 3.6.5. A preemptive VT system that estimates virtual time as in Equa-

tion 3.21 satisfies promises of the form:

promise(q) = WCFT (q, t(V ST (q))) = t(V ST (q)) + (V FT (q) − V ST (q))

Proof. In the VT system, virtual time moves at the same pace as clock time (dv/dt =

1) until the system finds at some time t that the current virtual time has fallen

behind the VST of all quanta in the system. At this time there are no eligible quanta,

and so the system “shifts” virtual time forward to be equal to the minimum VST

of the remaining quanta; this makes at least one quantum eligible. These “shifts”

are the interesting part of the system’s behavior, since otherwise it conservatively

estimates the flow of virtual time.

The proof is done by induction on the number of “shifts” in virtual time during

an interval where the CPU is not idle. Suppose that the CPU was idle immediately

prior to some time t0, and then it becomes active.

Assertion: At time t, the promises for all quanta q with v(t0) ≤ V ST (q) < v(t)

have been met.

Base: Prior to t0 there were no quanta in the system, and at t0 at least one

quantum arrives. For all quanta q that arrive at t0, by the definition of virtual start

time, V ST (q) ≥ v(t0). Therefore at time t0 there are no quanta in the interval with

V ST (q) < v(t0), and hence the assertion is true trivially.
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Step: Let tk be the time of the kth “shift” forward of the virtual time estimate,

and let v(tk) be the virtual time immediately before the shift takes place. Let v(tk−1)

be the virtual time immediately after the previous shift. Therefore at time tk it is

true that v(tk)−v(tk−1) = tk−tk−1. We show that it is possible to meet the promises

for all quanta such that v(tk−1) ≤ V ST (q) ≤ v(tk).

The insight behind the induction step is that the quanta in the system within

this interval can be divided into two classes: those with virtual finish times before

and after the shift. Those with VFTs before the shift have their promises met based

on the EDF optimality argument. Those with VFTs after the shift have all executed

by the time the shift occurs, and so it follows that their promises are met too.

First, we show that a quantum receives the same promise for all times t within

the interval between the shifts. Since dv/dt = 1 over the interval [tk−1, tk], for any

time t such that tk−1 ≤ t ≤ tk:

tk−1 − v(tk−1) = t − v(t) = tk − v(tk)

The promise given to a quantum q is:

WCFT (q, t(V ST (q))) = t(V ST (q)) + (V FT (q) − V ST (q))

Since dv/dt = 1 in the interval:

t(V ST (q)) = V ST (q) − v(tk−1) + tk−1

And by substitution:

WCFT (q, t(V ST (q))) = V FT (q) − v(t) + t (3.22)
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Case 1: V FT (q) < v(tk)

At tk−1, we know that only quanta with V ST (q) ≥ v(tk−1) are in the running

VT system, because the virtual time has just been “shifted”. This means that at

any time t such that tk−1 ≤ t ≤ tk, the only quanta that have promises that must be

satisfied by t are those with V FT (q) ≤ v(t). Note that dv/dt = 1 over the interval

between shifts, the sum of shares is no greater than 1 at all times, and:

cyc(qi) = RCPU ×

∫ V FT (qi)

V ST (qi)

Si(v)

From the above it follows that the VEGPS model itself provides a description

of how to meet the promises of these quanta, since virtual time and promises are

closely linked. In the model, by definition, each quantum finishes execution by its

virtual finish time:

cyc(qi) = Ci(t(V FT (qi))) − Ci(t(V ST (qi)))

Therefore, it is possible to meet the promise of all quanta q with V FT (q) < v(tk).

We know from the EDF optimality result that, if it is possible to meet a set of

deadlines, the system will meet them by executing them EDF. For all quanta with

V FT (q) < v(tk), Equation 3.22 shows that the promise is a direct function of

V FT (q). Therefore, using an argument identical to that in Theorem 3.6.3, executing

the eligible quanta preemptively by increasing virtual finish times is equivalent to

executing them by increasing promises. This means that the VT system meets the

promises of these quanta.
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Case 2: V FT (q) ≥ v(tk)

From Equation 3.22

WCFT (q, t(V ST (q))) = V FT (q) − v(tk) + tk

And since V FT (q) ≥ v(tk):

WCFT (q, t(V ST (q))) ≥ tk

By the assumption, V ST (q) ≤ v(tk). The shift only occurs when there is no

quantum left in the system such that V ST (q) ≤ v(tk). Therefore at time tk all such

quanta have left the system, and since their promises are no sooner than tk, their

promises have been met.

Corollary 3.6.6. Let δ be the runtime of a maximum-sized quantum. A nonpre-

emptive VT system that estimates virtual time as in Equation 3.21 satisfies promises

of the form:

WCFT (q, t(V ST (q))) = t(V ST (q)) + (V FT (q) − V ST (q))

promise(q) = WCFT (q, t(V ST (q))) + δ

Proof. The only change to the proof of Theorem 3.6.5 is in Case 1 of the induction.

In this case we apply the EDF optimality result for nonpreemptive systems.

The practical significance of this final theorem and corollary is that a running

system need not actually track the EGPS model in order to approximate it in real

time. A system can satisfy promises by assigning virtual timestamps to quanta, and

estimating virtual time, subject to the constraints of the theorem. The implication is

that a real-time scheduler with a complex but provable behavior can be implemented
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fairly simply: it only needs to maintain global and per-task virtual clocks, track the

virtual times at which task shares change, and calculate the current virtual time

as described in Equation 3.21. This insight provides the foundation of the Tyche

scheduler, which we present in the next chapter.
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Chapter 4

The Tyche CPU Scheduler

The primary technical insight of this dissertation is that virtual time is a powerful

tool for modifying the real-time behavior of a proportional sharing system. The

theoretical results in the last chapter illustrate the significance of virtual time and

its relationship to real-time promises. Intuitively, the VEGPS model provides a

description of how CPU capacity is allocated to quanta in the future. In contrast,

the EGPS model describes how that capacity is actually distributed to quanta in a

work-conserving system that strives for perfect weighted fairness.

In this chapter we build on the EGPS results to derive the Tyche scheduler and

determine its real-time properties. We first present the concept of share shifting

in the VEGPS model, by describing how to convert one instance of the model

into another by moving around blocks of virtual allocation. We then describe how

Tyche uses share shifting to meet deadlines within the VEGPS model. Finally, we

discuss how to implement Tyche by first presenting an implementation of a generic

proportional sharing scheduler that tracks the GPS model, and then showing it how

to modify it to incorporate share shifting.
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Figure 4.1: Shifting unallocated shares

4.1 Share Shifting

We first describe a general share shifting transformation to the VEGPS model;

the goal of share shifting is to change the share assignment of a task to change the

worst-case finish time of its quantum. If there exists unallocated CPU capacity, this

excess capacity can be shifted to the quantum to improve its promise; otherwise, it

is necessary to shift capacity from another task by changing its share too. Share

shifting has two components: a check that there is sufficient capacity in the model

to shift, and a readjustment of shares, and hence virtual finish times, to shift the

capacity in the model.

Figures 4.1 and 4.2 give the intuition behind share shifting: essentially, it involves

moving boxes around in the model. Both figures show how the system gives promises

to quanta, and the goal is to change the share of task C so that the system gives

its quantum (shown with stripes) the desired promise. Figure 4.1(a) shows the

default promises given to three tasks based only on their shares. In Figure 4.1(b),

the system shifts shares from the unallocated CPU capacity to task C to speed up
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Figure 4.2: Shifting shares from other tasks

its quantum and give it a better promise, as indicated by the diagonal striped box

that now appears in the unallocated share column. Conceptually, the share of the

quantum belonging to task C is briefly increased by the amount of the unallocated

share, from 0.29 to 0.65, before reverting to its old share. Figure 4.2 shows a

situation where there is no unallocated capacity to shift. In this case, the system

shifts shares to task C from tasks D and E. However, in order to avoid starvation

of the latter two tasks caused by share shifting, the system has been configured to

shift only some portion of their shares; in the figure this value is 60%. During the

time of the shift, task C’s share is 0.29 + (0.36 × 0.6) = 0.51 in the model, while

the shares of tasks D and E drop to 0.18 × 0.4 = 0.07. Note that not only does

the share shift cause the quantum of task C to get an earlier promise, but it also

pushes back the promises of the quanta of tasks D and E.

Equation 3.14 of Chapter 3 contains the basic insight into how share shifting

can be implemented: the worst-case finish time of a quantum is directly linked to

its virtual finish time, and so moving up its virtual finish time moves its worst-

70



case finish time by the same amount. This insight reduces the problem to finding

share assignments for a task i, during the interval in which its quantum executes in

the VEGPS model, that produce the desired virtual finish time for the quantum.

The key consideration is that the constraints of the virtual model be preserved; in

essence, this means that the sum of all shares must be kept no greater than 1 at all

(virtual) times.

The above intuition can be formalized as follows; note that we will express values

using integrals, but all of the amounts in question are calculated by summing boxes

as in Equation 3.20. Suppose that at time t the system gives a quantum qi belonging

to task i a promise of promise(qi), and a virtual finish time of V FT (qi), based on

some share value function for task i with regard to virtual time, Si(v) (recall that

the EGPS model expresses share changes with regard to virtual time, as in Equation

3.20). We wish to improve the promise of qi by shifting capacity from a set of tasks

L and the unallocated capacity. Let ∆ be the amount by which we desire to move

up V FT (qi), and let V FT ∗(qi) be the target virtual finish time for the quanta, such

that:

V FT ∗(qi) = V FT (qi) − ∆ (4.1)

By the definition of virtual finish times in the VEGPS model, we know that:

cyc(qi)

RCPU

=

∫ V FT (qi)

V ST (qi)

Si(v) =

∫ V FT ∗(qi)

V ST (qi)

Si(v) +

∫ V FT (qi)

V FT ∗(qi)

Si(v) (4.2)

Our goal is to find a new share assignment function, S∗
i (v), for task i such that:

cyc(qi)

RCPU

=

∫ V FT ∗(qi)

V ST (qi)

S∗
i (v) (4.3)
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In other words, we want to change the share of qi so that it receives enough

cycles before V FT ∗(qi) in the VEGPS model. This involves shifting an amount of

capacity in the model (call this amount ε) before V FT ∗(qi), such that:

ε =

∫ V FT (qi)

V FT ∗(qi)

Si(v) (4.4)

Let Sk(v) be the share of any other task k at virtual time v, and let the unallo-

cated share at virtual time v (i.e., 1 minus the sum of all task shares) be denoted

SU(v). For each task j ∈ L, let αj be the maximum shift percentage, with

0 ≤ αj ≤ 1; this value represents the percentage of task j’s share that is available

to be shifted to task i. First the system must check that there exists at least ε

capacity in the VEGPS model available to be shifted:

ε ≤

∫ V FT ∗(qi)

v(t)

(SU(v) +
∑

j∈L

αj × Sj(v)) (4.5)

The above check compares ε with the capacity that is either unallocated or

shiftable from tasks in L. If Equation 4.5 is true, then the system can choose new

shares for task i and all tasks j ∈ L at all virtual times v such that v(t) ≤ v ≤

V FT ∗(qi); the constraints of the virtual model are maintained as long as the sum

of all shares at all virtual times remains less than 1. Let S∗
k(v) be the new share

for some task k at virtual time v, and let Sk(v) be its original share at this virtual

time. The system can choose new shares for task i and all tasks j ∈ L such that:

∀v, v(t) ≤ v ≤ V FT ∗(qi) : S∗
i (v) +

∑

j∈L

S∗
j (v) +

∑

k/∈L,k 6=i

Sk(v) ≤ 1 (4.6)

To shift an amount of capacity equal to ε, we choose shares S∗
i (v) such that:

ε =

∫ V FT ∗(qi)

v(t)

(S∗
i (v) − Si(v)) (4.7)
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In other words, shares are chosen to increase the rate of task i so that it receives

ε more cycles in the VEGPS model by V FT ∗(qi). We know that it is possible to

choose S∗
i (v) to satisfy Equation 4.7 because of the check in Equation 4.5.

The system may shift shares from the tasks in L to task i over the interval to

shift the cycles. We only allow a proportion of the original share of any task j ∈ L

to be shifted at any time, so:

∀j ∈ L : ∀v, v(t) ≤ v ≤ V FT ∗(qi) : S∗
j (v) ≥ Sj(v) × (1 − αj) (4.8)

The result of share shifting is that the quantum qi belonging to task i has a new

virtual finish time V FT ∗(qi), and the share function of task i is changed to S∗
i (v).

The share functions of tasks in L may change as well; if this is the case, the virtual

finish times and promises of quanta belonging to these tasks will also be changed by

the shift. However, we delay quantifying how their promises change until the next

section.

We make two important points regarding share shifting. First, it should be clear

that the transformations presented above, when performed on an instance of the

VEGPS model, produce another instance of the VEGPS model. Second, the share

shifting transformation can be applied repeatedly to the model; this follows directly

from the first point. This means that the theoretical results shown to apply to a

VEGPS model in Chapter 3 continue to apply after any number of share shifting

transformations.

4.2 Tyche Model

The share shifting transformation can be used to build a real-time scheduler, which

we call Tyche, that operates in accordance with the Principles of User Benefit from
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Chapter 1. Tyche observes when an application may not meet its deadline based on

the default promise it receives from the system, and then shifts shares “on the fly” to

adjust the application’s promises forward to meet its deadline. By constraining how

shares are shifted, we are able to produce a scheduler that can track the underlying

VEGPS model simply and efficiently. In this section we describe our proposal, in

terms of the VEGPS model; in the next section we describe its implementation.

Tyche calculates the virtual finish time for all quanta qi belonging to task i

when they arrive, based on a default share Si for the task. When quantum qi

begins execution in the VEGPS model at time t(V ST (qi)), Tyche compares the

promise that it can give the quantum (based on V FT (qi)) with its deadline dl(qi).

If the promise falls after the deadline, Tyche will try to shift shares subject to the

conditions listed below. Let ∆ = promise(q)−dl(q) in Equation 4.1. The following

simplifying assumptions are applied to share shifting in Tyche:

• Each task i has a default share, Si. The task’s default share may change

over time (e.g., the user or a smart agent may decide to change it), but for

the purposes of scheduling individual quanta, it can be assumed to remain

constant. Unless Tyche explicitly changes task i’s share through share shifting,

its share is Si.

• Tyche divides all tasks into two priority levels: High and Low. All tasks

are allowed to shift from the unallocated shares, and High priority tasks are

allowed to shift shares from Low priority ones. By default, all tasks are Low

priority.

• All available unallocated capacity is shifted before shifting shares from the

Low priority tasks
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Figure 4.3: Tyche described in the VEGPS model

• Shares are shifted on a first-come, first-served basis; however, to avoid priority

inversions, Low priority tasks are not allowed to shift from the unallocated

capacity if there are any High priority multimedia or interactive tasks

• Share shifting begins at the earliest time possible and shifts the maximum

available capacity

• There is a single, system-wide α, representing the percentage of a Low priority

task’s share that can be shifted, rather than a per-task αj. This means that

shares are shifted proportionally from all Low priority tasks. The α knob can

be set by the user or system administrator to any value between 0 (no shifting

from Low priority tasks allowed) to 1 (starvation of Low priority tasks through

share shifting is possible). To make the implementation more efficient, Tyche

shifts shares using a binary function α∗(v) determined by the system-wide α,

as described shortly.

Figure 4.3 illustrates how share shifting is constrained by the above simplifica-

tions. In the figure, tasks A, B, and C are High priority, tasks D and E are Low
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priority, and task U is represents the unallocated CPU capacity. The system has

already shifted some shares to task C from both the Low priority tasks and the

unallocated capacity, and shifted shares to task B from the unallocated capacity

only. The essential feature of this model is that there are two important boundaries,

indicated by the dashed horizontal lines and representing the virtual earliest shift

times; these are the earliest virtual times at which unallocated and Low priority cy-

cles will become available for shifting. Let the current virtual time be represented as

v0, the virtual earliest shift time for unallocated cycles as V ESTU , and the virtual

earliest shift time for Low priority cycles as V ESTL; since no shares can be shifted

before the current time v0, V ESTU ≥ v0 and V ESTL ≥ v0. Then in the intervals

[v0, V ESTU ] and [v0, V ESTL], all available shares have been shifted from the un-

allocated capacity and Low priority tasks respectively; following these intervals, no

shares have been shifted. Note that, for all virtual times v such that v ≥ V ESTU ,

all tasks execute with their default shares, and for V ESTL ≤ v < V ESTU , only

unallocated shares are being shifted.

Next we rewrite the equations of Section 4.1 based on these constraints. For

clarity, we assume a preemptive system (where the worst-case finish time equals the

promise) but the results can be easily extended to a nonpreemptive system. Since

the share Si of task i is constant in our limited model, we calculate ε in Equation

4.4 as:

ε =
∆

Si

(4.9)

Shifting from unallocated capacity is a special case of share shifting from Low

priority tasks, and so we consider the latter; let L be the set containing the Low

priority tasks. Shifting begins at the earliest possible time, and so if the current

time is t, the beginning of any shifting interval must be V ESTL. Since in our model
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the shares of all Low priority tasks after V ESTL are equal to the default values, let

SL be the sum of all default shares for tasks in L. Then Equation 4.5, which checks

if there is ε capacity available to be shifted, can be simplified to:

ε ≤ (V FT ∗(qi) − V ESTL) × α × SL (4.10)

If there is enough virtual capacity to shift, then Tyche starts shifting the max-

imum allowable shares until ε is shifted. The virtual earliest shift time is updated

to represent the end of the interval; denote the new value as V EST ∗
L. Then:

V EST ∗
L = V ESTL +

ε

SL × (1 − α)
(4.11)

Share shifting is expressed using a function α∗(v) defined with respect to the

shifting interval [V ESTL, V EST ∗
L]. Over an interval of virtual time [a, b], define

α∗(v) as:

α∗(v) =























1 : [a, α(b − a) + a]

0 : (α(b − a) + a, b]

(4.12)

Note that α∗(v) is defined so that, given the interval [a, b]:

∫ b

a

α∗(v)dv = α

∫ b

a

dv (4.13)

With this definition, the new share of task i over the shifting interval, S∗
i (v), is:

∀v : V ESTL < v ≤ V EST ∗
L, S∗

i (v) = Si + (SL × α∗(v)) (4.14)
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Figure 4.4: Changing the worst-case finish time of a Low priority task

And for the Low priority tasks:

∀j ∈ L : ∀v : V ESTL < v ≤ V EST ∗
L, S∗

j (v) = Sj × (1 − α∗(v)) (4.15)

From these equations it follows that:

ε =

∫ V EST ∗

L

V ESTL

(S∗
i (v) − Si(v))dv (4.16)

And thus shares have been reallocated to accomplish the shift. The quantum

qi’s virtual finish time is now V FT ∗(q).

As mentioned, shifting from unallocated capacity is a special case of share shift-

ing from Low priority tasks. After V ESTU , no capacity has been shifted and so the

shares of all tasks are equal to the default values; let SU be 1 minus the sum of all

default shares. Then for a description of shifting from the unallocated capacity, let

α = 1 and replace V ESTL with V ESTU and SL with SU in the above equations.

Finally, we explain the purpose of α∗(v), and in the process quantify the change

in the virtual finish times of any Low priority quanta that has its share shifted away.

Suppose that the system shifts shares based on α in a straightforward manner; that

is, during a shift the share of Low priority task j would be S∗
j (v) = Sj × (1 − α).

The issue is that this complicates deriving the new virtual finish time for task j’s
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quantum qj. There would be three cases to consider, as illustrated in Figure 4.4,

depending on the relationship between V FT (qj) before the shift, and V EST ∗
L and

V FT ∗(qj) after the shift. In the figure, the gray box at left shows quantum qj

executing in the model at its default virtual rate Sj. The three cases at right show

three different configurations that can result from shifting from this quantum. The

striped box in the three cases shows the amount of capacity that is shifted away

from the quantum, and so the top of this box graphically represents V EST ∗
L; the

height of the gray box in each case represents V FT ∗(qj). The important feature

in each case is the rate at which the quantum executes in the virtual time interval

[V FT (q), V FT ∗(q)] (between the top dashed line and the top of the gray box).

Since each task is shifted from proportionally, the portion of ε that is shifted from

task j is ε × Sj/SL.

Case (1) V FT (qj) ≥ V EST ∗
L and so after V FT (qj) the quantum executes at rate

Sj; therefore:

V FT ∗(qj) = V FT (qj) +
ε × Sj/SL

Sj

= V FT (qj) +
ε

SL

(4.17)

Case (2) V FT ∗(qj) ≤ V EST ∗
L and so after V FT (qj) the quantum executes at rate

(1 − α) × Sj; therefore:

V FT ∗(qj) = V FT (qj) +
ε × Sj/SL

(1 − α) × Sj

= V FT (qj) +
ε

(1 − α) × SL

(4.18)

Case (3) In this case, V FT (qj) < V ESTL < V FT ∗(qj) and the quantum executes

at two different virtual rates: (1 − α) × Sj up until V EST ∗
L (the top of the

striped box) and then Sj afterward. This means that δ = (1 − α) × Sj ×

(V ESTL −V FT (qj)) is the execution of the quantum before V ESTL, and so:
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V FT ∗(qj) = V ESTL +
ε × Sj/SL − δ

Sj

= V ESTL +
ε

SL

+
δ

Sj

(4.19)

Clearly, this is complicated. The α∗(v) function allows the new virtual finish

time for a quantum to be calculated much more simply, yet still updates the V ESTL

boundary as if shares were shifted in the straightforward manner based on α. Since

the share of a Low priority task j is 0 when α∗(v) = 1 and Sj otherwise, the new

virtual finish time of its quantum qj is always:

V FT ∗(qj) = V FT (qj) + α × (V EST ∗
L − V ESTL) (4.20)

This change increases the new virtual finish time of the quantum in Cases (2)

and (3) slightly more than it would by handling the three cases separately, but

ultimately it leads to a simpler and more efficient implementation. This concludes

the description of how Tyche employs share shifting in the VEGPS model, and its

effect on the virtual finish times and promises of quanta.

4.3 Implementing Tyche

This section presents an event-driven implementation of the Tyche model. First

we describe a proportional share scheduler that tracks the GPS model defined in

Section 3.1. Next we discuss how to implement Tyche’s share shifting mechanism

in this framework. Finally we present Tyche as a small number of changes to the

proportional share scheduler.

4.3.1 Proportional Share Scheduler

We present an event-driven implementation of a standard proportional share sched-

uler that tracks the GPS model, based loosely on EEVDF [61]. State variables are
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Variable Description Notation

Preemptive true if the system is preemptive

GlobalVC the estimated global virtual clock v(t)

TimeNow the current clock time t

LastEvent the clock time of the last event

Pending bag of active but not yet eligible tasks

Runnable bag of active and eligible tasks

Free.shares unallocated shares SU

Table 4.1: Global state for proportional share scheduler

Variable Description Notation

task.shares default task share Si

task.vc task virtual clock

task.vst task virtual start time V ST (q)

task.vft task virtual finish time V FT (q)

task.timeslice task timeslice cyc(q)/RCPU

Table 4.2: Per-task state for proportional share scheduler

maintained at two levels: globally, and per-task, as summarized in Tables 4.1 and

4.2. The right-hand column in the table lists the corresponding notation in Sections

4.1 and 4.2. We assume that each task has either 0 or 1 quantum executing in the

real system at any time, and so the per-quantum state discussed so far (e.g., virtual

start and finish times, deadline, etc.) is folded into the task state.

The Pending and Runnable “bags” represent sets of tasks without specifying the

underlying data structure. The Pending bag supports the operations of adding a

task to the bag, getting an eligible task (one with task.vst ≤ GlobalVC), and finding

the minimum task.vst of all tasks in the bag. The Runnable bag supports adding a

task, getting the task with the minimum task.vft, and finding the minimum task.vst.
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Events occur when a task performs one of the following actions: requests a new

timeslice, becomes eligible to run, finishes a timeslice, enters the system, exits the

system, or changes its share. Next we present some subroutines that are invoked by

multiple event handlers. The first subroutine estimates the new value of the virtual

clock, based on the time elapsed since the last event and the minimum virtual start

time of any task in the system, as in Equation 3.21:

update_gvc():

GlobalVC += (TimeNow - LastEvent)

min_vst = get_min_vst(Runnable, Pending)

GlobalVC = max(GlobalVC, min_vst)

LastEvent = TimeNow

The second subroutine updates the virtual clock of a task if it has fallen behind

the current virtual time. This subroutine is trivial, but will be expanded for the

Tyche scheduler:

update_task_vc(task):

update_gvc()

task.vc = max(task.vc, GlobalVC)

In order to maintain the constraints of the VEGPS model, it will be necessary to

delay an action until a specific virtual time has been passed. The schedule event()

function is used to schedule an event to fire after virtual time vtime; fire events() is

used to fire events that are pending. When an event fires, action(event) is called,

where action() is a function supplied when the event was scheduled, and event is a

data structure holding state pertaining to the event. The function prototypes are

given below, though the implementations are omitted:

schedule_event(vtime, action(), task, state)

fire_events()
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The final subroutine chooses the next task for execution. It may be called

from different event handlers, depending on whether the system is preemptive or

nonpreemptive. The function eligible task() returns an eligible task from the bag,and

is used to move all eligible tasks to the Runnable bag; the min vft task() function

returns the task with the minimum task.vft in the bag. The global virtual time

must be updated before getting the next task to run, since the set of eligible tasks

depends on the current virtual time.

schedule():

update_gvc()

fire_events()

while (task = eligible_task(Pending))

add_to_bag(Runnable, task)

task = min_vft_task(Runnable)

execute_task(task)

Next we present the event handlers. A task requests a new timeslice when it is

woken up, or after its previous timeslice ends. Tyche first updates the global virtual

clock, GlobalVC. Variable task.vc contains the virtual time up until which the task

has consumed its allocation, and the interval between task.vst and task.vft is the

allocation given to the next timeslice. Therefore the new timeslice receives a virtual

start time of max(task.vc, GlobalVC) and the task’s virtual clock is updated to this

time as well. The new timeslice’s virtual finish time is then calculated as described

in Section 3.1 and the task is placed in the Pending bag (after first being removed

from the Runnable bag if it was in there). Finally, if the system is preemptive, a

scheduling decision is made.

new_timeslice(task):

update_task_vc(task)

task.vst = task.vc

task.vft = task.vst + task.timeslice/task.shares
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remove_from_bag(task)

add_to_bag(Pending, task)

if (Preemptive)

schedule()

A task becomes eligible once the global virtual time, GlobalVC, passes its

virtual start time, task.vc. In a preemptive system this event occurs when the

global virtual time reaches the task’s virtual start time, even if another task is

running. Note that virtual time flows at the same rate as real time while a task is

running, and so this can be implemented using an alarm signal or its equivalent. For

example, if the current virtual time at time t is v(t) and the next task in the Pending

bag becomes eligible at virtual time v(t) + N , then we set the alarm to fire at time

t + N . The schedule() subroutine moves the eligible task from the Pending bag to

the Runnable bag, so we simply call that routine. This event does not explicitly

occur in a nonpreemptive system; in such a system, an eligible task will be moved

from one bag to another at the next scheduling decision.

task_eligible(task):

if (Preemptive)

schedule()

A timeslice finishes when the task blocks, is preempted, or yields voluntarily.

When a timeslice finishes, the tasks virtual clock is updated by the actual time

that the task ran rather than its maximum execution time. Note that if the task is

not blocked then it will request another timeslice immediately and so it remains in

the Runnable bag. The significance is that the global virtual clock will be updated

correctly when the task requests its next timeslice.

timeslice_finishes(task, ran):

task.vc = task.vst + ran/task.shares
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task.vst = task.vc

if (task is blocked)

remove_from_bag(task)

else

new_timeslice(task)

schedule()

When a task enters the system, its task virtual clock is initialized to the global

virtual clock and the shares allocated to it are subtracted from Free.shares.

task_enters (task, shares):

update_gvc()

Free.shares -= shares

task.shares = shares

task.vc = GlobalVC

A technique used in the next handler, and one that we will employ often in

the Tyche implementation, is incrementing share counters from events. When a

task leaves the system, its quanta may have already consumed some amount of

future capacity in the virtual model, as represented by the task variable task.vc. We

need to maintain the invariant that the sum of shares in the virtual model is less

than 1 at all times, but this invariant may be violated if we increase Free.shares by

task.shares and then another task immediately allocates all the free shares to itself.

Therefore we essentially delay the task’s departure until the virtual time reaches

task.vc. This allows us to increment Free.shares only after the additional capacity

becomes available in the virtual model. Note that the problem of maintaining the

virtual model when tasks leave the system is solved by Goddard and Tang in [19]

using a different technique.

task_leaves (task):

schedule_event(task.vc, exit_event, task, null)
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exit_event (this):

task = this.task

Free.shares += task.shares

exit(task)

Finally, we handle the event where a task changes shares. We assume that

this event occurs between timeslices for the task, that is, after the task’s previous

timeslice has run but before it requests the next timeslice. If the task is increasing

its share, we also assume that Free.shares ≥ diff:

task_inc_shares(task, diff):

Free.shares -= diff

task.shares += diff

If the task’s share decreases, we assume that task.shares ≥ diff. The system needs

to delay increasing the unallocated shares until virtual time task.vc, as in the case

when a task leaves the system, in order to maintain the invariants of the virtual

model:

task_dec_shares(task, diff):

task.shares -= diff

schedule_event(task.vc, dec_shares_event, task, diff)

dec_shares_event(this):

diff = this.state

Free.shares += diff

4.3.2 Implementing Share Shifting

Our goal is to illustrate how a standard proportional sharing scheduler requires only

minor changes to implement the Tyche model described in Section 4.2. Ideally, our

changes will require maintaining a small amount of additional information about

the virtual model, and will produce a scheduler that is still relatively simple and
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efficient. However, subtle difficulties can arise when implementing Tyche’s version of

share shifting, stemming from discrepancies between the VEGPS model and the real

system. Next we describe the issues involved and discuss a few design alternatives

for our Tyche implementation.

In the VEGPS model, all eligible tasks are receiving service simultaneously at

a particular virtual time. The real system runs only eligible tasks as well, but at

a particular virtual time, some eligible tasks are waiting to run and some have run

already. This can cause some difficulties for share shifting, since capacity already

received by a task is not available to be shifted. The Tyche virtual model describes

shifting from all Low priority tasks starting at the earliest possible virtual time, but

in the real system some of these tasks may have already consumed their capacity

until after this time. Share shifting without attention to quanta that have already

run can interfere with the ability of the real system to track the model.

First, we give an implementation of share shifting that completely accounts for

the discrepancies between the real system and the VEGPS model. For clarity,

this subroutine only shifts shares from Low priority tasks and not the unallocated

capacity. The subroutine calculates the desired virtual finish time (vft) of the High

priority task (task) using its deadline. It then determines the amount of capacity

available for shifting by summing over all Low priority tasks. Each task (low) stores

the next virtual time at which its capacity is available for shifting in low.avail, and

so the total capacity available for shifting from the task is (vft - low.avail) * Alpha *

low.shares. If there is enough capacity to shift, the Low priority tasks must have their

virtual clocks and virtual finish times incremented. However, in order to correctly

track the VEGPS model, it must be the case that low.vc ≤ vft after the update; this

means that less capacity may be shifted from some tasks than others. Therefore,

the algorithm shift starts with the set of all Low priority tasks, and calculates the

amount it needs to shift from all tasks in the set (offset) assuming that each has the
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capacity available. It then shifts up to this amount from the task with the largest

low.vc, subtracts the actual amount shifted from need, and removes the task from

the set (by updating shares). The last step is to set the virtual finish time of the

High priority task to the desired value.

share_shift_complete(task):

vft = task.dl - TimeNow + GlobalVC

need = (task.vft - vft) * task.shares

if (need > 0)

avail = shares = 0

foreach Low priority task ’low’

low.vc = max(low.vc, GlobalVC)

low.avail = max(low.avail, low.vc)

avail += (vft - low.avail) * alpha * low.shares

shares += low.shares

if (need <= avail)

foreach Low priority task ’low’, by decreasing low.vc

offset = need / shares

if (low.vc + offset > vft)

offset = vft - low.vc

low.avail += offset / Alpha

task.vst = min(task.vst, low.vc)

low.vc += offset

low.vft += offset

need -= offset * low.shares

shares -= low.shares

task.vft = vft

One issue with the above implementation of share shifting is that is inefficient: it

has to traverse a sorted list of Low priority tasks on each shift, and the result may be

a reordering of this list (and also the runqueue). An alternate approach is to estimate

the capacity available for shifting and the change to each Low priority task’s virtual

clock, in order to perform the shift in constant time. This approach closely follows

the description of the Tyche model in Section 4.2. A new variable Low.vc maintains

the value of V ESTL, such that Low.vc ≥ GlobalVC. The check of whether there is

enough capacity to shift employs an estimate based on the difference between vft and
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Low.vc. To perform the shift, the Low priority tasks must have their virtual clocks

and virtual finish times incremented; since in Equation 4.20 they all increase by the

same amount, we simply update a single variable, Low.offset. We then fix up the

individual task variables in the event handlers as follows. When each task requests

a new timeslice or finishes a timeslice, it saves the value of Low.offset in its own

variable task.offset. Then, at the next task event, the difference between Low.offset

and task.offset represents the amount shifted from the task since its last event. If,

in the interim, the task was waiting to execute a timeslice, or task.vc ≥ GlobalVC,

then we add this difference to task.vc to update its usage, and adjust task.vft by

the same amount to change its timestamp (we can do this without reordering the

runqueue, as will be explained in the next section). Otherwise, task.vc < GlobalVC,

and we conservatively estimate the new value for task.vc: since we know that all

the available time between GlobalVC and Low.vc has been shifted, then our estimate

is task.vc = GlobalVC + (Low.vc - GlobalVC) * Alpha. The shifting portion of this

approach is shown below.

share_shift_estimate(task):

if (Low.vc <= GlobalVC)

Low.vc = GlobalVC

vft = task.dl - TimeNow + GlobalVC

need = (task.vft - vft) * task.shares

if (need > 0)

avail = (vft - Low.vc) * Low.shares

if (need <= avail)

Low.offset += need / Low.shares

task.vst = min(Low.vc, task.vst)

Low.vc += need / (Alpha * Low.shares)

task.vft = vft

We use the estimation technique outlined above in our Tyche prototype, even

though it trades off some degree of accuracy in tracking the VEGPS model for

a more efficient implementation. The issue is that using Low.vc to estimate the
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capacity available for shifting may lead to quanta running in the real system in a

different order than dictated by their virtual finish times in the model. For example,

the result of shifting shares from a Low to a High priority quantum may be to swap

the ordering of their virtual finish times: the Low priority quantum may have had

an earlier VFT before the shift, but after the shift its VFT is later. The quanta

should run in order of increasing VFTs, and so the High priority quantum should

run before the Low priority one after the shift; if the Low priority quantum has

already left the system, this is not possible and so the new promise made to the

High priority quantum may not be kept. However, we believe that this trade-off is

worthwhile in practice for two reasons. First, unlike many hard real-time systems,

no serious consequences attend a broken real-time promise in a multimedia system.

Indeed, a key claim of our thesis is that it is permissible for the system to break

promises in order to provide more value and we judge that a promise broken in the

name of a more efficient implementation is also acceptable. We do not yet have a

method of characterizing the frequency at which promises may be broken by our

approximation method, but the results of Chapter 5 indicate that this may not be

a significant issue in practice, since we were unable to observe our prototype system

breaking promises in unexpected ways. Second, we note that the trade-off only

affects the manner in which the system tracks the VEGPS model while maintaining

the invariants of the model itself. This means that the inaccuracy that may be

introduced by estimating the shiftable capacity is localized in time; in the example

above, the ability of the system to track the model is completely restored after the

High priority task runs.

The two implementations of share shifting presented so far are not the only ones

possible. We could also implement share shifting in a way that is conservative in

its estimation, and so correctly tracks the VEGPS model, but is also simple. For

example, if the system uses an approach similar to that discussed above, but updates
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Variable Description Notation

LowCanShift true if Low priority tasks are allowed to shift shares

RunnableLow bag of active and eligible Low priority tasks

RunnableHigh bag of active and eligible High priority tasks

Free.vc virtual clock for unallocated capacity V ESTU

Low.shares shares of Low priority tasks SL

Low.vc virtual clock for Low priority tasks V ESTU

Delta maximum task timeslice

Table 4.3: Global state additions for Tyche

Variable Description Notation

task.prio true if the task is High priority i /∈ L

task.dl task deadline dl(q)

task.shift how much time was shifted for a High priority task

task.offset used for saving value of Low.offset

Table 4.4: Per-task state additions for Tyche

Low.vc such that Low.vc ≥ max(task.vc) for all Low priority tasks task, then we will

never shift capacity that is not present in the model. Another approach may be to

dynamically adjust Low.shares so that it only contains the shares of tasks that have

capacity available at virtual time Low.vc. For instance, for a Low priority task task,

when task.vc > Low.vc then task.shares could be subtracted from Low.shares, and

when task.vc ≤ Low.vc then they could be added back. The drawback with both

of these schemes is that they may severely underestimate the existing shiftable

capacity, and thus may allow fewer opportunities for shifting.
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4.3.3 Tyche Scheduler

In this section we present the Tyche scheduler by adding code to the proportional

share scheduler in 4.3.1. New lines of code within the bodies of functions previously

presented are listed in slanted text, while entirely new functions are identified as

such. Tyche handles the same set of events as the proportional share scheduler,

plus one more: a task changes priority. Tyche maintains some additional global

and per-task state, as summarized in Tables 4.3 and 4.4. Note the use of two

Runnable bags, RunnableHigh and RunnableLow. Two bags allow for a more efficient

implementation, as shifting from the Low priority tasks (in bag RunnableLow) can be

performed without affecting the underlying data structure (e.g., without reordering

a sorted queue). Tyche calculates the effective virtual timestamp of a Low priority

task as task.vft + Low.offset - task.offset, and so the RunnableLow bag only needs to

be able to return the task with the smallest value of task.vft - task.offset; adding to

Low.offset does not affect the Low priority tasks’ relative ordering within the bag.

First, we describe how Tyche performs share shifting using the information it

maintains about the virtual model. The following subroutine is share shift estimate()

from the previous section, with shifting from the unallocated capacity and some

other details added. Tyche calculates the desired vft and moves it up by the maxi-

mum timeslice value Delta if the system is nonpreemptive. It uses Free.vc to calculate

the available free capacity, and estimates the available Low priority capacity using

Low.vc as already described. Tyche then shifts as much unallocated capacity as pos-

sible, and updates Free.vc to note the amount shifted. If this amount is insufficient

to produce the desired virtual finish time, then shares are also shifted from the Low

priority tasks, and Low.vc and Low.offset are changed. Finally, task.vft is set to the

desired value and variable task.shift is used to record how much time was shifted for

the High priority task.
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share_shift(task):

task.shift = 0

if (Low.vc <= GlobalVC)

Low.vc = GlobalVC

vft = task.dl - TimeNow + GlobalVC

if (! Preemptive)

vft -= Delta

need = (task.vft - vft) * task.shares

if (need > 0)

avail_free = max((vft - Free.vc) * Free.shares, 0)

if (task.prio)

avail_low = (vft - Low.vc) * Low.shares

if (need <= avail_free + avail_low)

if (avail_free <= need)

task.vst = min(task.vst, Free.vc)

Free.vc += need / Free.shares

else

Free.vc = vft

need -= avail_free

Low.offset += need / Low.shares

task.vst = min(Low.vc, task.vst)

Low.vc += need / (Alpha * Low.shares)

task.shift = task.vft - vft

task.vft = vft

The update gvc() subroutine now has to check both bags containing Runnable

tasks and update the Free.vc and Low.vc variables if they fall behind the current

virtual time.

update_gvc():

GlobalVC += (TimeNow - LastEvent)

min vst = get min vst(RunnableLow, RunnableHigh, Pending)
GlobalVC = max(GlobalVC, min_vst)

LastEvent = TimeNow

Free.vc = max(Free.vc, GlobalVC)
Low.vc = max(Low.vc, GlobalVC)

The update task vc() subroutine is changed to update the virtual clocks of Low

priority tasks as described in Section 4.3. Variable task.idle indicates whether the

task was idle (blocked) in the interim.
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update_task_vc(task):

update_gvc()

if (! task.prio)
if (task.idle == true && task.vc < GlobalVC)

task.vc = GlobalVC + (Low.vc - GlobalVC) * Alpha
else

task.vc += Low.offset - task.offset
task.offset = Low.offset

else
task.vc = max(task.vc, GlobalVC)

The schedule() handler must check both Runnable bags. The virtual finish time

of a task in the RunnableLow bag is calculated by adding Low.offset and subtracting

the task’s offset.

schedule():

update_gvc()

while (task = eligible_task(Pending))

if (task.prio)
add to bag(RunnableHigh, task)

else
add_to_bag(RunnableLow, task)

low = min_vft_task(RunnableLow)

high = min vft task(RunnableHigh)
if (high.vft < low.vft + Low.offset - low.offset)

execute task(high)
else

execute_task(low)

The schedule event() function is unchanged. However, a new subroutine updates

the LowCanShift variable:

update_shift_permission():

if (any High priority interactive or multimedia tasks)

LowCanShift = false

else

LowCanShift = true
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Next we show changes to the event handlers. The new timeslice() handler is

changed to perform share shifting for tasks with a deadline (e.g., multimedia and

interactive). High priority tasks can always try to shift, and Low priority tasks can

shift if LowCanShift is true.

new_timeslice (task, time):

update_task_vc(task)

task.vst = task.vc

task.vft = task.vst + task.timeslice/task.shares

if (task.dl && (task.prio || LowCanShift))
shift shares(task)

task.idle = false
remove_from_bag(task)

add_to_bag(Pending, task)

if (Preemptive)

schedule()

Handler task eligible() is unchanged.

For handler timeslice finishes(), we need to adjust the virtual clock of all tasks

based on actual usage. The virtual clock update for a High priority task takes into

account the amount shifted to reduce its deadline. For a Low priority task, the

update accounts for time shifted away from the task while it was waiting to run.

timeslice_finishes(task, ran):

task.vc = task.vst + ran/task.shares

if (task.prio)
task.vc -= task.shift
task.shift = 0

else
task.vc += Low.offset - task.offset
task.offset = Low.offset

task.vst = task.vc

if (task is blocked)

remove_from_bag(task)

task.status = idle
else
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new_timeslice(task)

schedule()

By default, a task is Low priority when it enters the system. Its virtual start

time is initialized to Free.vc, instead of GlobalVC, to account for previous shifts

from the unallocated capacity. If Free.vc > Low.vc, the system delays incrementing

Low.shares until the added capacity becomes available at virtual time Free.vc.

task_enters (task, shares):

update_gvc()

Free.shares -= shares

task.shares = shares

task.vc = Free.vc

task.prio = false
schedule event(Free.vc, enter event, task, null)

enter event (this):
task = this.task
Low.shares += task.shares
task.offset = Low.offset

When a Low priority task leaves the system, we decrement Low.shares immedi-

ately to prevent shifting any more of its capacity.

task_leaves (task):

update_task_vc(task)

if (! task.prio)
Low.shares -= task.shares

update shift permission()
schedule_event(task.vc, exit_event, task)

exit_event (this):

task = this.state

Free.shares += task.shares

exit(task)

In order to increment the task share we need to wait until the capacity becomes

available at Free.vc. We also wait until then to update Low.shares.
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task_inc_shares(task, diff):

update gvc()
Free.shares -= diff

schedule event(Free.vc, inc shares event, task, diff)

inc shares event (this):
task = this.task
diff = this.state
task.shares += diff

if (! task.prio)
Low.shares += diff

The procedure to decrement a task’s share is analogous to when it leaves the

system.

task_dec_shares(task, diff):

update_task_vc(task)

task.shares -= diff

if (! task.prio)
Low.shares -= diff

schedule_event(task.vc, dec_shares_event, null, diff)

dec_shares_event(this):

diff = this.state

Free.shares += diff

Finally, we describe the new handler invoked when a task changes priority. If

the task goes from High to Low priority we wait until task.vc to increment the Low

priority shares as above. In the other direction we simply subtract the task’s shares

from Low.shares.

task_change_prio(task):

update_task_vc(task)

if (task.prio)

schedule_event(task.vc, change_prio_event, task, null)

task.prio = false

else
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Low.shares -= task.shares

task.prio = true

update_shift_permission()

change_prio_event(this):

task = this.task

Low.shares += task.shares

task.offset += Low.offset

4.3.4 Overhead Analysis

Next we show that the Tyche scheduler’s asymptotic overhead is O(log N) per

scheduling decision, where N is the number of active tasks.

Each runnable task is first inserted into the Pending bag, then removed and put

into one of the two Runnable bags, and finally removed from that bag and executed

for a timeslice. A heap can be used to implement the Pending, RunnableHigh, and

RunnableLow bags; heaps support inserting and deleting an element in log N time,

and finding the maximum value element in constant time [54].

The global virtual clock is updated after each timeslice completes. The calcula-

tion of the global virtual clock performed by function update gvc() requires finding

the minimum VST of a task in one of the bags. The Pending bag is sorted by VST

so this operation takes constant time. However, the RunnableLow and RunnableHigh

bags are sorted by VFT. Another heap could be employed to track the minimum

VST of a task in one of the Runnable bags; that is, each runnable task is placed on

two heaps at once, a Runnable heap sorted by VFT and the second heap sorted by

VST. In this way, updating the global virtual clock can be done in constant time

with one more heap insertion and removal per timeslice.

Finally, Tyche’s share shifting mechanism in function share shift() is performed

no more than once per timeslice and takes constant time. It does not access any data

structures, it simply performs arithmetic and updates variables. Since a constant
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number of operations, each consuming no more than log N time, are performed for

each timeslice, we conclude that Tyche’s scheduling overhead is O(log N).

4.4 Discussion

In this chapter, we presented the Tyche scheduler as a model and an algorithm for

tracking this model. We conclude with a brief discussion of two issues relating to

our methodology. First, we argue that Tyche’s model is the right one to implement

the Principles of User Benefit outlined in Chapter 1. Second, we establish that the

real system described by the event-driven scheduler presented in the last section

will track the model in real time.

Why is Tyche’s model the right one? To answer this question we review each of

the Principles of User Benefit from Chapter 1. Principle PUB1 says that at low

levels of system utilization, timing constraints should be met, and shifting from the

unallocated capacity accomplishes this. Principle PUB3 observes that the user’s

notion of importance shifts over time, and our model allows a task to quickly shift

between High and Low priority. Principle PUB4 states that High priority tasks

should be able to shift capacity from Low priority ones to meet their deadlines, and

this is a key part of our model. Principle PUB5 states that Low priority tasks

should not be unduly penalized by meeting the timing constraints of High priority

ones. Our model uses priorities to adjust promises to meet deadlines, rather than

simply choosing which task to run next; the model ensures that a deadline of a

High priority task that is far in the future can be met, even if a Low priority task

is allowed to run before it. Finally, Principle PUB6 insists that the user should be

able to allow or prohibit starvation as he chooses. The model realizes this principle

through the α parameter, which can be used to guarantee Low priority tasks a

minimum rate when share shifting is in progress.
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In Chapter 3, Theorem 3.6.5 and Corollary 3.6.6 establish that the techniques

used by the proportional share scheduler described in Section 4.3.1 are sufficient

to track a GPS model in real time. The Tyche scheduler builds on this framework

to describe a means of estimating the virtual capacity available to shift, and to

account for the shift by efficiently updating the virtual clocks of tasks. As long as

Tyche maintains a consistent VEGPS model, the theorems of the previous chapter

can be invoked to establish its real-time behavior in accordance with the model.

Section 4.3.2 points out that our technique of estimating the capacity available

to shift correctly maintains the model, but may introduce small discrepancies in

how the real system tracks it. Therefore, the earlier theoretical results apply to our

implementation, subject to the slight differences that may result from our deliberate

trade-off of accuracy for efficiency. We note that no negative effects of this trade-off

are noticeable in our experimental evaluation of Tyche, which we present in the

next chapter.
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Chapter 5

Evaluation

Given a set of applications with corresponding CPU shares, the Tyche CPU sched-

uler provides the user with more value than a traditional share-based CPU scheduler.

In this chapter we evaluate Tyche’s mechanisms and show how they increase the

overall value of the system for the user.

This chapter is organized as follows. In Section 5.1 we discuss why methods

used to evaluate some other recent multimedia CPU schedulers are not useful for

evaluating Tyche, and propose a new evaluation methodology. We describe our

Tyche prototype in Section 5.2 and the workload generator we use to evaluate it

in Section 5.3. Our first set of experiments, in Section 5.4, measures scheduling

overheads associated with our prototype. We then report on experiments that

examine how Tyche supports batch, multimedia, and interactive applications in

Sections 5.5 through 5.7. In Section 5.9, we conclude by discussing the results of

our evaluation.
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5.1 What to Measure?

We believe that we cannot adequately evaluate Tyche with the same methods used

to evaluate similar CPU schedulers. The Tyche CPU scheduler augments a tradi-

tional proportional sharing algorithm with the share shifting mechanism, described

in Chapter 4, to better satisfy the needs of multimedia and interactive applications.

At least two other recently proposed multimedia schedulers take a similar approach.

First, SMART [45, 46] modifies proportional sharing by adding multiple queues at

different priorities, and dynamically reorders multimedia tasks on the runqueue to

meet more deadlines. Second, BVT [17] adds a warping mechanism to proportional

sharing, allowing the scheduler to subtract a constant warp factor from the time-

stamp of some tasks at certain times in order to produce better latency. This section

explains why the methods used to evaluate SMART and BVT are inappropriate for

evaluating Tyche, and proposes the new evaluation methodology that we follow in

this chapter.

The challenge facing us is to quantify the value that share shifting adds to

proportional sharing in terms of some metric; typical metrics used to evaluate mul-

timedia CPU schedulers are the number of deadlines met by multimedia tasks or the

response latency of interactive tasks. This challenge is complicated by the number

of independent variables that come into play in any real experiment. Specifically,

with a share-based CPU scheduler, the deadlines met by an application, or its re-

sponse latency, depends heavily on the relationship between the share chosen for the

application and its workload: if the CPU fraction corresponding to the chosen share

is large enough to satisfy the real-time requirements of the application workload,

then the application will meet its quality target with regard to deadlines or latency.

Another factor is the competing workload, meaning the CPU requests generated by

the other applications in the system. For example, a multimedia application with
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a share that is insufficient to guarantee all its deadlines may still enjoy good per-

formance if the CPU is lightly loaded. Finally, in the case of Tyche and similar

schedulers, activating a new mechanism that has been added to a share-based algo-

rithm may produce some improvement in deadlines or latency for the application.

If the mechanism is parameterized (e.g., BVT’s warping mechanism is controlled

by selecting a warp factor, a maximum warp duration, and a warp period for each

application) then the choice of parameters may influence the behavior of the system

as well.

Concretely, to set up a suite of experiments to evaluate the Tyche scheduler, we

must first answer three questions:

1. What is the workload? Clearly we would like to run Tyche with representative

multimedia workloads. The problem is that no definitive benchmark suite

exists for testing multimedia CPU schedulers. The focus of MediaBench [34]

is on quantifying the benefits of hardware and compilation techniques for

multimedia applications. Most evaluations of multimedia CPU schedulers

consist of running a few allegedly representative applications; for example,

the experiments used to evaluate SMART employ two instances of a modified

Integrated Media Stream Player from Sun as multimedia applications, the

Dhrystone benchmark [68] to consume cycles, and a keystroke generator [53]

to emulate an interactive application. Even if this represents a legitimate

multimedia workload, it is not clear how to generalize from this single workload

to all real multimedia systems.

2. What parameters to use? It may seem reasonable to test Tyche using the

optimal share assignment for a particular application mix, and measure the

contribution of Tyche’s share shifting mechanism given these optimal share

values. However, as we have already argued, choosing the best share assign-
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ment for a particular workload may be NP-hard, and therefore is unlikely to

be consistently achieved in practice. For this reason we need to understand

the benefits of Tyche for sub-optimal share values. On the other hand, both

SMART and BVT sidestep this question entirely by assigning an equal share to

all applications. 1 While choosing good shares is a hard problem, we consider

this approach unacceptable because it ignores the major strength of propor-

tional sharing: its ability to allocate to an application the specific resources

that it needs. There is little value in showing that a mechanism added to a

share-based scheduler leads to improvements given “default” shares, if simply

rebalancing the shares in some obvious way would be even more effective.

3. What is the metric? Multimedia applications provide more value by meeting

more deadlines, and interactive applications through reduced response latency.

However, “we met X% more deadlines” is not really a meaningful result if

meeting them unacceptably degrades the performance of another application,

does not lead to a perceptible increase in application quality, or if the user

simply does not care about meeting them. If we are serious about building

better systems, we must make the case that our ideas lead to substantial

improvements for the user.

Our evaluation methodology for Tyche answers the above three questions as

follows. First, we use a completely artificial workload, enabling us to explicitly con-

figure all aspects of the workload and system parameters to tease out specific, narrow

behaviors of the system. We augment a workload generator (Hourglass [52]) with

two new task models: an MPEG decoder task and a bursty, event-driven interactive

task. These are discussed in Section 5.3. We can vary one aspect of the workload or

CPU scheduler while holding others constant to understand its contribution to the

1We assume this is the approach taken by BVT, since they make no mention of application
weights or shares in their evaluation [17].
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overall system behavior. This approach allows a disciplined exploration of the multi-

dimensional problem space. We discuss the issue of generalizing our experimental

results in Section 5.9.

Second, we evaluate our workloads using a range of share values. Our underlying

assumption is that an application’s share assignment represents some smart entity’s

best guess at how to provide the user with the most value, but since this problem

is NP-hard, the shares will often be sub-optimal. In particular, we are interested in

share assignments that cause the user to be unhappy with an application’s quality—

meaning its share is too small to meet enough deadlines or respond quickly enough

to his input.

Third, we propose a new metric to capture the effectiveness of mechanisms

added to proportional share schedulers—that of robustness to choice of share for

a specific application quality. The purpose of the new metric is to answer the

following question: suppose, at a given share assignment, that the user is unhappy

with an application’s quality, but that he would be happy if the application achieved

a specific, higher quality level. What is the chance that share shifting will allow

the application to meet this target (and make the user happy) without adversely

impacting other applications? We answer this question by looking at the change in

an application’s robustness to choice of share when share shifting is applied. Since

we do not know what application quality will be sufficient to make a particular user

happy, we measure this change for all application quality levels.

This new metric is essentially the inverse of the standard one: rather than

selecting a share, and measuring the change in deadlines met with that share, we

select a target number of deadlines and measure how the share necessary to meet

that target changes. SMART and BVT are evaluated using the standard metric,

by measuring the number of deadlines met or latency produced at a given share

(usually an equal share for all tasks, as mentioned above). If we were to evaluate
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share shifting using the standard metric, we would choose a share assignment, run

the chosen workload with share shifting first turned off and then turned on, and

compare the deadlines or interactive latency across the two scenarios. We reject this

method for two reasons. First, it is unclear how to generalize the results of such

an experiment across multiple share values. Suppose that share shifting allows us

to meet more deadlines given one set of of share assignments; this may or may not

mean that we would see an improvement with another set of shares. Our metric

strives to capture the improvements seen across a range of share values. Second,

the number of deadlines met is not necessarily a meaningful metric for the user.

For example, suppose that a multimedia task meets 5% of deadlines without share

shifting, and 10% with share shifting; this is an improvement of 100% in the number

of deadlines met, which sounds very good. However, an MPEG decoder that meets

10% of deadlines probably still delivers a level of video quality that the user finds

unacceptable. Our metric focuses on satisfying the user, rather than simply meeting

a few more deadlines; we look at the share value required to meet the number of

deadlines that will provide the user with the application quality he wants.

We define an application’s robustness to choice of share, given a particular work-

load and target application quality, as the minimum CPU share that it needs to

achieve that quality. Then, keeping all other factors constant, the change in ro-

bustness when activating share shifting represents an estimate of the value of share

shifting for the user. For example, suppose that, given a set of tasks and shares for

those tasks, an MPEG decoder requires a share of 0.24 to meet 95% of its dead-

lines, and that this is the minimum quality that will satisfy a particular user. Now

suppose that share shifting allows the MPEG to meet 95% of its deadlines with

a share of 0.21, without changing any of the shares of other applications. In this

case, share shifting increases the application’s robustness to its choice of share by

(0.24 − 0.21)/0.24 = 12.5% for 95% quality. In other words, without share shift-

106



ing and given that the share of the MPEG decoder is somewhere between 0 and

0.24, the MPEG decoder is not achieving 95% quality and the user is unhappy.

The chance that activating share shifting will bring the application’s quality up to

95%, satisfying the user, is 12.5%, given a random distribution of shares over the

interval. Another way of looking at the metric is that, since the shares are chosen

by an unknown method, our metric treats the method as random; an application’s

robustness expresses the chance that the application will perform poorly given this

randomly-assigned share. Since random assignment is probably not a good share

selection strategy, the change in robustness actually is a rather pessimistic estimate

of the real benefits of share shifting to the user; we revisit this issue in Section 5.9.

Finally, showing how Tyche improves a multimedia application’s robustness to

its share is only half of our goal—we must also demonstrate that the impact on

other applications is acceptable. We do this by showing that the behavior of other

tasks in our generated workload always adheres to one of two sets of constraints.

In the case where the user has not marked any multimedia applications as High

priority, we ensure that every task always receives a fraction of the CPU at least

as large as its share. Intuitively, given two Low priority multimedia tasks, share

shifting for one should not cause the other to miss deadlines. If there are High

priority applications, each High priority application must receive at least its share,

and each Low priority application must receive an allocation of at least its share

times (1 − α), where α is the system-wide parameter defined in Section 4.2. Here,

the intuition is that share shifting for a High priority multimedia task may cause a

Low priority task to miss deadlines, but not another High priority one. As argued

in Chapter 1, these constraints are furnished directly by the user and so we assume

that the system’s behavior is reasonable as long as it stays within them.
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5.2 Prototype Implementation

The prototype implementation of the Tyche CPU scheduler runs as a Linux kernel

module, known as “SILK” (Scout In the Linux Kernel), with 2.4-series kernels.

In this section we discuss relevant aspects of the SILK scheduling framework, and

describe the API that Tyche provides to applications.

5.2.1 SILK

The SILK kernel module currently provides share-based CPU scheduling (not using

Tyche, however) on all PlanetLab nodes as part of the PlanetLab OS [7]. SILK

allows new scheduling algorithms to be plugged into Linux without requiring any

changes to the Linux scheduler itself. Here we discuss features of the SILK frame-

work that are relevant to our evaluation of Tyche; more information on SILK’s

implementation can be found at [5]. The original SILK prototype [11] grew out of

work on the Scout operating system [42, 57].

First, recall that the theoretical results in Chapter 3 apply to both preemptive

and nonpreemptive systems; the theorems describe results for preemptive systems

and the corollaries for nonpreemptive. A preemptive system preempts a running

quantum (i.e., timeslice) if another one with a lower VFT becomes eligible to run,

while a nonpreemptive system runs the first quantum to completion. An implemen-

tation artifact of SILK is that it schedules the CPU nonpreemptively, meaning that

each task gets to run until it completes its timeslice, yields, or blocks. Note that a

task is still preempted by the system after it runs for the duration of its timeslice; in

this context, nonpreemption simply means that the task’s timeslice is not preempted

in the middle by another task. According to the corollaries in Chapter 3, quanta

in a non-preemptive system may complete up to ∆ later than in the corresponding

virtual time model, where ∆ is the maximum allowable quantum duration. The
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implication is that quanta belonging to multimedia tasks may finish slightly later

in a nonpreemptive system than in a preemptive one, potentially missing deadlines

that they would have met had the system been preemptive. We could account for

∆ by having Tyche subtract it from all of the deadlines that applications advertise

to the system, so that a quantum that finished up to ∆ after its advertised deadline

would still meet its actual deadline. However, we do not explicitly account for the

factor ∆ in our prototype. We did not find this to be an issue in our evaluation, as

the effects of late quanta were hidden by application buffering.

Second, SILK controls the Linux scheduling decision using a scheduling thread

that runs at the highest Linux priority. The scheduling thread boosts the priority of

the task that Tyche has chosen to run and then yields; the result is that the Linux

scheduler runs the chosen task next. This method effectively doubles the number of

context switches performed by the system, since at each scheduling decision Linux

must first switch to the scheduling thread and then to the chosen task. To offset this

increase in scheduling overhead, SILK removes all tasks that it manages from the

Linux runqueue until SILK decides to run them; this optimization reduces overhead

for large numbers of tasks, as measured in Section 5.4.

Third, SILK implements its own version of the Resource Container abstrac-

tion [4]. Individual processes are associated with a Container (currently based on

effective UID), as are scheduling parameters (i.e., shares). Note that Tyche assumes

that each application is given a share: Tyche’s share shifting mechanism is triggered

when a process’s real-time CPU requirement is less than that provided by its share.

For this reason, the experiments in this chapter run one process per Container.
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5.2.2 Tyche API

The prototype Tyche implementation communicates with applications via the /proc

file system. The following files are found in directory /proc/scout/cpu. An appli-

cation typically writes to these files to change the values of scheduling parameters

(e.g., its next deadline), or reads from them to get information from the scheduler

(e.g., Tyche’s forecast of whether the application’s next deadline will be met).

reserve Sets the share for a Container.

release Removes the share for a Container.

slices Lists the current shares for all Containers.

priority Sets the priority (High or Low) for a Container.

alpha Sets the system-wide parameter α, governing what portion of a Low priority

application’s share can be shifted.

deadline An application specifies its CPU requirements by writing its deadline and

execution requirement (in cycles) to this file. That is, if it does not receive its

execution requirement by its deadline then the deadline will be missed. When

it writes its CPU requirement, the application also gives Tyche a hint about

how to use share shifting to provide value; these hints will be discussed in

Section 5.2.3.

running Lists information on the running task, including Tyche’s forecast regard-

ing whether its next deadline will be met or missed based on its virtual time-

stamp. Adaptive multimedia applications can use this forecast to decide when

to drop frames.
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5.2.3 Types of Share Shifting

Our goal is to use share shifting to provide additional value to the user, by enabling

applications to meet more deadlines or achieve better latency given their share

values. On the other hand, we do not want to shift shares if doing so provides no

additional value, since shifting shares away from a Low priority task can reduce its

quality. For this reason, multimedia and interactive applications inform Tyche about

how share shifting can help the application provide value. Tyche provides three

types of share shifting: adaptive, non-adaptive, and interactive; each application

chooses the type of share shifting that it needs when it specifies its CPU requirement.

Adaptive share shifting supports smart, resource-aware, adaptive multimedia

applications such as the video decoders described in [30, 36, 45]. The application

informs Tyche of its CPU requirements, and Tyche shifts shares if doing so will meet

the next deadline; otherwise, no share shifting is done. The expectation is that the

adaptive application will check Tyche’s deadline forecast, and if the next deadline

is not predicted to be met, it will be skipped (e.g., an MPEG video decoder would

drop the frame). Thus, adaptive share shifting is only invoked when it can provide

value by meeting a deadline.

Interactive share shifting is used by applications that are concerned about min-

imizing perceived latency, such as an editor or the thread that updates the mouse

cursor on a graphical display. In this case, rather than shift shares to meet a specific

deadline, Tyche shifts the maximum amount of shares allowable in order to mini-

mize the virtual timestamp of the task. That is, it calculates the earliest deadline

that could be met by shifting, and shifts to meet that deadline. Since interactive

share shifting is not driven by deadlines supplied by the application, it always occurs

when it is requested.
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Non-adaptive share shifting combines elements of adaptive and interactive shift-

ing, and supports resource-aware but non-adaptive multimedia applications; an

example would be a simple, open-source video player like the the VLC media

player [64] augmented with the CPU prediction techniques described in [8]. Such

multimedia applications can inform Tyche of their CPU requirements, but they per-

form work, such as decoding MPEG video frames, regardless of whether the work’s

deadline can or cannot be met. For these tasks, Tyche first tries to shift using

the adaptive shifting strategy to meet the deadline. If the deadline cannot be met

in this way but it has not yet passed, then interactive shifting is applied. If the

deadline has already passed, then no shifting is done—Tyche avoids throwing away

cycles on an application which cannot use them to provide any immediate value.

We note two things about the forms of share shifting we provide in our Tyche

prototype. First, a single application can use multiple share shifting strategies. For

example, the adaptive MPEG decoder application modeled in Section 5.6.3 uses

adaptive shifting when decoding B frames, and non-adaptive shifting for I and P

frames; this is because only B frames are dropped. Second, we do not claim to

have implemented all of the interesting methods of share shifting; there are other

possibilities regarding both when and how to shift shares. Share shifting is really

a means of cooperation between applications and the scheduler, and so it is likely

that other types of applications may find other forms of share shifting to be useful

as well.

5.3 Workload Generator

Hourglass [52] is a workload generator for testing real-time CPU schedulers as “black

boxes”. Hourglass operates by forking multiple threads, each of which implements

a chosen canned workload; examples of Hourglass workloads are CPU-bound and
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periodic real-time. A thread forked by Hourglass spins and sleeps in a pattern that

depends on the workload it is generating. At the conclusion of a run, Hourglass

outputs detailed traces of thread activity at sub-millisecond granularities as well

as summary statistics, e.g., the number of deadlines met by real-time threads. We

added two new workloads to Hourglass, to simulate the resource demands of an

MPEG decoder and an event-driven interactive application such as moving the

mouse cursor. Note that we do not claim that these workloads perfectly model real

multimedia or interactive tasks; rather, their purpose is simply to illustrate Tyche’s

capabilities by introducing new sources of variation in how CPU requests are made

in real time. Fully characterizing the workloads generated by different types of

applications is a subject of ongoing research.

Our MPEG workload is derived from Hourglass’s periodic task. A periodic task

in Hourglass has a periodic deadline and an execution requirement that represents

the CPU time the task must receive by the next deadline in order to meet it. The

thread generates this workload by spinning for its execution requirement, and then

if the next deadline has not yet passed, it sleeps until the deadline. The MPEG task

extends this model by varying the execution requirement based on the frame type

being “decoded”; each MPEG task has a frame type sequence (e.g., IPBBPBB) and

each frame type is given a decode time. In other words, the MPEG task advertises

time constraints to Tyche consisting of an execution requirement based on the type

of the next frame to be decoded, and the display deadline of that frame. To a first

approximation, the MPEG task can be thought of as a periodic task with varying

execution requirements.

The MPEG task model also simulates buffering and delayed playback, techniques

that multimedia applications use to smooth variations in the frame decode times.

In order to decode a frame, the model requires that a buffer be available in which

to write the result. This means that an MPEG thread is permitted to continue
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Figure 5.1: New generated workloads in Hourglass

running as long as it has a free buffer in which to deposit the decoded frame; when

all buffers are full, it sleeps until a buffer becomes available. Thus, an MPEG task

with a frame sequence of I and one buffer generates a workload identical to that of

a periodic task. Note that, in our model, the deadlines that the MPEG task model

advertises to Tyche are the deadlines of individual frames, and so the fact that

the task uses buffering does not actually change the deadlines it advertises. On the

other hand, delayed playback adds an offset to all frame deadlines, which introduces

latency into the playback stream. We experimented with several different values for

the playback delay and observed very little effect; as a result, this features is unused

in our evaluation (i.e., the deadline of the first frame in the video is 33ms after the

time the task submits its first time constraint to Tyche).

Our interactive workload is another variation on the periodic task model. The

goal of this workload is to simulate a bursty, event-driven computation like making

changes to the graphical display when the user moves the mouse. The interactive

workload is specified by an execution requirement, a burst size N , and two periods:

within and between a burst. The workload generated consists of N executions spaced

by the period within a burst, followed by a gap determined by the period between
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bursts. The interactive workload can be thought of as a periodic task whose period

can vary.

Figure 5.1 illustrates the execution requests made by both kinds of workloads.

Each box corresponds to a single quantum; the width of box indicates the period

of the task, and the height indicates the execution requirement of that quantum.

Figure 5.1(a) represents an MPEG task with a frame sequence of IPBBPBB, with

I frames assigned the longest decode time and B frames the shortest; thus, the

tallest boxes correspond to I frames and the shortest to B frames. We note that

the MPEG task has a regular period and execution requirements that vary as a

function of the frame sequence. Figure 5.1(b) shows a contrasting workload for an

interactive task, with regular execution requirements but an irregular period.

5.4 Overheads

All of the experiments in this chapter are performed on a 733MHz Pentium 3 with

256 MB of memory. The machine runs a Linux 2.4.22 kernel patched with a 1ms

timer tick (instead of the default 10ms); since Linux only checks to see if a task

has exceeded its timeslice on a timer tick, this patch allows for smaller timeslices.

We also patched the nanosleep() function in the kernel to take advantage of the

new timer granularity, turning off the default behavior whereby real-time tasks spin

when sleeping for less than 2ms.

Tables 5.1 summarizes overheads associated with our implementation of Tyche

in SILK. Tyche imposes overhead on applications by communicating with them

via /proc: a resource-aware multimedia or interactive application must write its

deadline and execution requirement to a /proc file; to get its deadline forecast, an

adaptive multimedia application also reads from a /proc file (and calls lseek()

between reads). We measure the cost of these operations by running strace -c
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Source of overhead µs

/proc read 16

/proc write 7

/proc lseek 5

timer tick 11

Tyche/SILK csw with 50 tasks 19

Linux csw with 50 tasks 29

Table 5.1: Implementation overheads

on programs that read and write the relevant files. We also measure scheduling

overheads incurred when scheduling 50 tasks, using Tyche running in SILK and,

for comparison, the standard Linux scheduler. The cost of invoking the Tyche

scheduler includes an extra context switch to run the scheduling thread, and the

context switch times are furnished by Hourglass. Finally, since we changed the timer

frequency from 100Hz to 1000Hz (and so increased timer overhead by an order of

magnitude), the table also includes this cost as extracted from the traces produced

by Hourglass.

From the tables, we can estimate the total overhead that an application using

Tyche is expected to incur. For every frame, an adaptive MPEG decoder would

read and write to /proc once and incur one Tyche scheduling decision; if there are

50 runnable tasks in the system, the total per-frame overhead is 47µs. It typically

takes on the order of milliseconds to decode an MPEG frame, so this overhead is

still quite low. We also note that SILK’s optimization of removing tasks from the

Linux runqueue until they are chosen to run produces a scheduling overhead that

compares favorably with Linux when managing 50 tasks. We expect Tyche/SILK

to exhibit low scheduling overhead with higher numbers of tasks, but 50 tasks is the

limit of Hourglass.
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Figure 5.2: Distribution of timeslices by proportional share

Task # 0 1 2 3 4 5 6 7 8

Share 1 2 4 8 16 32 64 128 256

Actual % 0.20 0.39 0.77 1.55 3.09 6.18 12.34 24.69 49.37

Expected % 0.20 0.39 0.78 1.57 3.13 6.26 12.52 25.05 50.1

Table 5.2: CPU fractions for 9 batch tasks

5.5 Batch Applications and Tyche

This section demonstrates how Tyche’s foundation of proportional sharing delivers

CPU fractions to batch applications. As discussed in Chapter 2, proportional shar-

ing schedulers are already a well-established area; the following discussion mainly

serves as a “sanity check” on Tyche’s implementation of basic proportional sharing.

Our simple experiment uses Hourglass to run 9 CPU-bound tasks, with task

i given a share of 2i/1000 and a timeslice of 5ms. Figure 5.2 illustrates how the

scheduler interleaves timeslices (represented by the black vertical ticks) belonging

to the nine tasks over a three second interval, showing how a proportional sharing

scheduler provides weighted fairness between tasks at a fine granularity in real time.

Table 5.2 lists the actual CPU allocation as measured by each task during a run of

60 seconds, as well as the expected value based on the share.
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We note two things about Table 5.2. First, the actual numbers do not total 100%

due to timer and context switch overheads, which Hourglass does not include in its

measurements of a thread’s running time. Second, the tasks with smaller shares

receive the expected amount of CPU, but tasks with larger shares receive slightly

less. The reason is, at the start of the test, all tasks have the same virtual start time

and all are eligible; the result is that each runs for one quantum, round-robin, right

off the bat. If the test were stopped at this point, each task would have received

1/9 of the capacity, which greatly exceeds the ideal allocation for those tasks with

small shares. However, as the test continues to run, the proportions converge to the

ideal values.

5.6 Multimedia Applications and Tyche

As argued in Chapter 1, a firm real-time multimedia system should strive to max-

imize user value; such a system must gracefully handle the situation where an

application’s share is too small to provide the quality that the user desires. This

section examines how Tyche’s share shifting algorithm makes multimedia appli-

cations more robust to their chosen share values, helping those applications with

inadequate shares to achieve better quality.

We present three scenarios, showing how different kinds of multimedia appli-

cations can take advantage of the features offered by Tyche. First, we look at

a traditional, “dumb” multimedia application that does not understand its own

fine-grained resource requirements and does not adapt its behavior to the available

resources. Such applications are scheduled like batch applications, and can meet

their deadlines if their shares are large enough. Second, we add the ability for the

application to understand its own real-time CPU requirements and advertise them

to the system. We demonstrate how Tyche’s share shifting mechanism uses this
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information to improve the application’s quality. Third, we consider a multimedia

application that is both resource-aware and can adapt its behavior to the CPU

fraction it receives. These applications are not yet mature, but we show that Tyche

can complement such applications by improving their quality as well.

The experiments in this section follow the same pattern: we run two versions of

the same test, with share shifting disabled and then enabled (except in Section 5.6.1,

where we do not enable share shifting). In each test, an MPEG task competes for

CPU cycles with two other tasks, and we are primarily interested in the percentage

of deadlines that the MPEG task meets; we run the MPEG task at share values

between 0.01 and 0.3 to examine its performance at a wide range of share levels.

The two tasks that the MPEG task competes with are a CPU-bound task, and a

task that simulates an interactive JPEG decoder (i.e., it is an MPEG task with

a frame sequence of I and two buffers; its execution requirement is 4.8ms and its

period is 25ms). The CPU-bound task consumes all of the cycles that it can get

(that is, the CPU utilization is at 100% in all experiments), and we measure the

CPU fraction it receives. It is assigned all of the shares in the system that are not

assigned to other tasks or deliberately kept free. The JPEG decoder is allocated

just enough shares (0.2) to meet its deadlines, and so will miss them if it does

not receive its CPU allocation in real time. We use the JPEG task to check that

share shifting for the MPEG task does not have an adverse effect on the real-time

behavior of other tasks—in a sense, the JPEG task is a barometer of Tyche’s ability

to correctly allocate resources in real-time to other tasks while share shifting for the

MPEG task.

In each set of experiments, we change the “intelligence” of the MPEG thread

with regard to understanding and reacting to its real-time resource needs, but all

experiments use the same MPEG workload. The MPEG thread in all experiments

has a period of 33ms, a frame sequence of IPBBPBBPBB, and I, P , and B frame
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decode times of 15.5ms, 8.5ms, and 5.5ms respectively. We chose these particular

values because they correspond to the parameters for the Terminator 2 clip studied

in [8]. The decoder is modeled with three buffers and zero frames playback delay.

5.6.1 Traditional Multimedia

In the first scenario, we demonstrate the relationship between an application’s share

and its quality using traditional, “dumb” multimedia applications. Such applica-

tions are not aware of their real-time resource requirements and cannot adapt their

behaviors to the available resources. It is already well-known that a proportional

share scheduler like Tyche can be used to effectively schedule tasks with real-time

requirements by giving them sufficient CPU fractions. This section simply repro-

duces previous results, and in the process introduces the format of the graphs that

are used throughout these experiments.

Since a “dumb” multimedia application cannot tell the scheduler about its ex-

ecution requirements, Tyche schedules it like a batch application—it receives a

fine-grained CPU fraction based on its share. However, this is often good enough:

if this CPU fraction is large enough to enable the decoder to meet its frame dead-

lines, they will be met. The four graphs of Figure 5.3 show the results of varying

the share given the MPEG decoder between 0.01 and 0.3, with either 0 or 0.1 free

shares (top and bottom graphs, respectively). The x-axis in each graph shows the

shares assigned to the MPEG task. In the graphs on the left, the y-axis shows the

percentage of deadlines that the MPEG task meets given its share. In the graphs

on the right, the y-axis shows the percentage of the CPU consumed by the CPU-

bound and JPEG tasks (left side) or the number of deadlines missed by the JPEG

task (right side). Note that each right-side graph shows the JPEG task consuming

slightly less than its share of 20% of the CPU and meeting all of its deadlines.
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(a) Dumb MPEG task, 0 free shares
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(b) Other tasks, 0 free shares
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(c) Dumb MPEG task, 0.1 free shares
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(d) Other tasks, 0.1 free shares

Figure 5.3: Traditional MPEG decoder, 0 and 0.1 free shares
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Based on its average CPU requirement of approximately 8ms every 33ms, the

MPEG decoder should require a share of about 0.24 to meet its deadlines. Figure

5.3(a) shows that, with no free shares and an overall CPU utilization of 100%,

the MPEG decoder meets above 95% of its deadlines—representing excellent video

decode quality—with this share or greater, while missing almost all deadlines with

smaller shares. Note that once the MPEG decoder is able to receive the resources

it needs to play the video at the full rate, it uses no further resources and so its

resource usage levels off for higher share values. Figure 5.3(b) shows this indirectly:

the CPU-bound task receives exactly its share (represented by the dotted diagonal

line) when the MPEG task has a share less than 0.24, and then its usage flattens

out once the MPEG task is running at full speed.

The bottom graphs in Figure 5.3 show the same task set running with 0.1 free

shares (i.e., 10% of the capacity of the CPU). There are two things to note. First,

the CPU-bound task now always receives an amount of CPU in excess of its share—

proportional sharing schedulers distribute unallocated capacity to tasks that can use

it in proportion to their share values. Second, the MPEG task starts meeting above

95% of its deadlines at a share of 0.21 instead of 0.24. Like the CPU-bound task, it

receives its proportion of the free shares and so is able to achieve the level of resource

usage needed to meet its deadlines with a smaller share assignment. As an example

use of our robustness to choice of share metric, we might say that maintaining a

pool of 0.1 free shares improves the robustness of the MPEG task by 12.5% at a

quality of 95%. Note that this result is simply illustrative and is not particularly

meaningful.

Finally, we remark that, for small share values, the MPEG decoder meets no

deadlines; then at some point a small increase in its share value results in a large

increase in deadlines met. This is represented in the graphs by the steep slope of

the MPEG task’s deadline curve in the neighborhood of 0.2 shares. This sensitivity
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of the application to small changes in its share value is a result of its own behavior.

That is, it always decodes a frame even though its deadline may have already passed.

If its share is too small, this strategy causes it to fall farther and farther behind

the deadlines in the video stream, meeting none of them. However, as soon as

its share is large enough, it is able to keep up with the video stream and misses

very few deadlines. Thus, the quality provided by such an application using share

scheduling is essentially binary: either the decoder can keep up with the stream or

it cannot. We will see later that adaptive multimedia applications do not have such

steep deadline curves.

5.6.2 Resource-aware Multimedia

This scenario replays the previous one, this time with a resource-aware MPEG task

that can advertise its deadlines and execution requirements to Tyche. In this set

of experiments, the MPEG task informs Tyche of its next deadline and the cycles

required to meet it. If the task’s share is insufficient to meet its next deadline and

share shifting is enabled, Tyche uses non-adaptive share shifting to try to meet the

deadline—this form of share shifting is used because the application cannot drop

frames. We evaluate both the case where free shares are shifted, and where shares

are shifted from Low to High priority tasks.

First, we look at the impact of shifting free shares. As before, the MPEG task

varies its share and competes with a CPU-bound task and a JPEG decoder task.

Figure 5.4 shows the deadlines met by the MPEG task with share shifting disabled

(top graphs) and enabled (bottom graphs). In the top graphs, we see that the MPEG

task meets 95% of its deadlines with a share of 0.20. This is roughly the same share

(0.21) required in Section 5.6.1 with 0.1 free shares; the small difference is due to

the fact that, since the MPEG task is now advertising its resource requirements,

123



 0

 20

 40

 60

 80

 100

 0  0.05  0.1  0.15  0.2  0.25  0.3

P
er

ce
nt

 o
f M

P
E

G
 d

ea
dl

in
es

 m
et

Share of MPEG decoder thread

MPEG deadlines met

(a) Resource-aware MPEG task
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(b) Other tasks
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(c) Resource-aware MPEG task with shift-
ing
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(d) Other tasks with shifting

Figure 5.4: Resource-aware MPEG decoder, 0.1 free shares
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(a) Resource-aware MPEG task

 0

 20

 40

 60

 80

 100

 0  0.05  0.1  0.15  0.2  0.25  0.3
 0

 1

 2

 3

 4

 5

P
er

ce
nt

 C
P

U
 u

sa
ge

M
is

se
d 

de
ad

lin
es

 fo
r 

JP
E

G
 th

re
ad

Share of MPEG decoder thread

CPU-bound usage
CPU-bound share

JPEG usage
JPEG share

JPEG deadlines missed

(b) Other tasks
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(c) Resource-aware MPEG task with shift-
ing
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(d) Other tasks with shifting

Figure 5.5: Resource-aware MPEG decoder, 0 free shares, α = 0.1
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Tyche does not preempt the task in the middle of decoding a frame. Figure 5.4(a)

shows the CPU-bound task receiving its share (represented by the dotted diagonal

line) plus a proportion of the free shares, and the JPEG task meeting all deadlines.

In the bottom graphs of Figure 5.4, we see that non-adaptive share shifting

enables the MPEG task to meet 95% of deadlines with a share of 0.14. Recall from

Section 5.2.3 that non-adaptive shifting will shift shares as long as the deadline has

not already passed; it either shifts enough shares to meet the deadline, or failing

that, as many as it has available. The result is that share shifting is only activated

when the share of the multimedia task is large enough for non-adaptive shifting

to help it to meet its deadlines. At this point, the CPU usage of the CPU-bound

task drops to equal its share and the MPEG task achieves a quality of near 100%.

We see from the figure that, in this scenario, allowing share shifting from the free

shares to the multimedia application results in 30% more robustness at a quality

level of 95% (or at almost any quality level, since the curve is so steep). Note that

Figure 5.4(d) shows that, even when share shifting, the CPU-bound task receives

at least its share and the JPEG task misses no deadlines.

Second, we run an analogous experiment to show the impact of shifting shares

from Low priority tasks. In this experiment there are no unallocated shares, the

MPEG and JPEG tasks are High priority and the CPU-bound task is Low priority,

and α is set to 10%. Recall that α is the parameter set by the user to indicate the

portion of a Low priority task’s share that it is permissible to shift. Figure 5.5 shows

an effect similar to that in Figure 5.4, with Tyche able to shift up to 10% of the

cycles of the CPU-bound task to the MPEG task in order to meet more of latter’s

deadlines. Without share shifting, the MPEG task requires a share of 0.23 to meet

over 95% of its deadlines (down slightly from the value of 0.24 measured in Section

5.6.1, for the same reason stated earlier); with share shifting, the MPEG task only

requires a share of 0.18. Thus, in this experiment, the MPEG task’s robustness to

126



its share is increased by 22% at a quality of 95%. Note that, while Tyche is share

shifting, the CPU-bound task always receives at least (1 − α) of its share; because

it is High priority and none of its share is shifted, the JPEG task continues to meet

all deadlines.

5.6.3 Adaptive Multimedia

The third scenario shows how Tyche can enable adaptive multimedia applications,

applications that adjust to the resources that the system makes available to them.

It also demonstrates how shifting can complement these adaptive applications, pro-

viding the user with additional value.

In this set of experiments, the MPEG task looks at the deadline forecast provided

by Tyche to decide whether or not to decode the next frame. Our MPEG task model

simulates the behavior of a simple adaptive MPEG application [23] by requesting

adaptive shifting for B frames, and dropping the B frame if the forecast is that its

deadline will not be met. I and P frames are always decoded, since in a real MPEG

stream other frames in the sequence can depend on these frames. Since I and P

frames are never dropped in our scenario, the MPEG task requests non-adaptive

shifting for these frames to ensure that they complete as early as possible if their

deadlines cannot be met.

Figures 5.6 and 5.7 show the results of running experiments like those in the

Section 5.6.2. We note two things. First, the slope of the MPEG deadline curve

is not as steep as in the previous experiments, representing a more efficient use of

resources at some shares; we will examine this in more detail shortly. Second, as in

the previous experiments, share shifting moves the MPEG task’s curve to the left

while meeting the conditions that all tasks receive their share (in Figure 5.6) and

that Low priority tasks receive at least (1 − α) times their share (in Figure 5.7).
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(a) Adaptive MPEG task
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(b) Other tasks
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(c) Adaptive MPEG task with shifting
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(d) Other tasks with shifting

Figure 5.6: Adaptive MPEG decoder, 0.1 free shares
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(a) Adaptive MPEG task
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(b) Other tasks
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(c) Adaptive MPEG task with shifting
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(d) Other tasks with shifting

Figure 5.7: Adaptive MPEG decoder, 0 free shares, α = 0.1
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(a) With 0.1 free shares
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(b) With 0 free shares

Figure 5.8: Comparison between MPEG decoder types

Note that, in both cases, the JPEG task is once more unaffected by share shifting

and meets all its deadlines.

Figure 5.8 compares the deadlines met at different share values for an MPEG

task without adaptation, with adaptation, and with adaptation and share shifting.

Clearly, the adaptive MPEG task trades off resources for quality better than without

adaptation. For example, to meet 75% of its deadlines with 0.1 free shares, the

adaptive MPEG decoder requires only a share of 0.17; adaptation increases the

MPEG decoder’s share robustness by 15% for this quality level. It is clear from

Figure 5.8 that the adaptive MPEG decoder plus share shifting offers the greatest

improvement in robustness of choice of share relative to the traditional MPEG

decoder that cannot employ share shifting.

Our robustness metric is a function of the user’s target application quality, and

Tables 5.3 and 5.4 summarize the robustness results of Figure 5.8 for several different

quality levels. The first column in each table shows a percentage of deadlines met,
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% dl dumb plus adaptation plus share shifting

Shares Shares ∆% dumb Shares ∆% dumb ∆% adapt

95 0.2 0.2 0 0.14 30 30

90 0.2 0.19 5 0.12 40 37

75 0.2 0.17 15 0.1 50 41

50 0.2 0.14 30 0.07 65 50

Table 5.3: Summary of MPEG robustness results for 0.1 free shares

% dl dumb plus adaptation plus share shifting

Shares Shares ∆% dumb Shares ∆% dumb ∆% adapt

95 0.23 0.23 0 0.2 13 13

90 0.23 0.22 4 0.19 17 14

75 0.23 0.2 13 0.13 43 35

50 0.23 0.17 26 0.12 48 29

Table 5.4: Summary of MPEG robustness results for 0 free shares, α = 0.1

and the second column is the share required by the traditional, “dumb” MPEG

task to achieve that quality level. The third column shows the share required by

the adaptive MPEG task to reach the same quality level, and the fourth column

shows the increase in robustness to choice of share introduced by the MPEG task’s

adaptation to the available resources. The fifth column shows the share required

to meet the quality target using adaptation plus share shifting, and the sixth and

seventh columns state the increase in robustness relative to the traditional and

adaptive tasks respectively. So, for example, at the 50% quality level, with 0 free

shares and α = 0.1, adaptation was able to increase the traditional MPEG task’s

robustness to its choice of share by 26%, and adaptation plus share shifting increased

the traditional MPEG tasks’s robustness by 48%. Finally, adding share shifting to
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the adaptive MPEG task increased its robustness to choice of share by 29% at the

same quality level.

We make two observations about these tables. First, for lower levels of appli-

cation quality, simple adaptation typically improves the application’s robustness to

its share assignment by a large amount. Tyche’s deadline forecast facility makes it

straightforward for an application that is already resource-aware to adapt its be-

havior in this way. Second, share shifting is able to further improve application

robustness after adaptation. The exact amount that an application’s robustness

can be improved by shifting depends on many factors, including its share, work-

load, and behavior; the number of free and Low priority shares; and the parameter

α. As a result, it is difficult to generalize about the specific value added by Ty-

che’s share shifting mechanism for multimedia applications. However, we believe

the experiments show that share shifting is able to significantly improve multimedia

applications’ robustness to their share values with even modest pools of free shares

and for small α.

5.7 Interactive Applications and Tyche

The experiments of Section 5.6 demonstrate that Tyche can increase an MPEG

task’s robustness to its share value, or said another way, can help the task meet

more deadlines for some share values without unacceptably impacting other tasks.

In this section we examine how Tyche can help reduce the latency of event-driven

interactive tasks.

The experiment that we run in this section is patterned after those in Sections

5.6.2 and 5.6.3; however, we substitute an interactive task for the MPEG task. Re-

call that the interactive task model added to Hourglass is defined by an execution

requirement, burst size, and intra- and inter-burst periods; for these experiments
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the task has an execution requirement of 6ms, a burst size of 10, an intra-burst

period of 50ms, and an inter-burst period of 3s. Though these numbers are some-

what arbitrary, they may resemble the pattern of resource requests generated by a

user who is making small movements of the mouse every few seconds, e.g., while

surfing the Web. The other two tasks (i.e., CPU-bound and JPEG) have the same

parameters as before. We vary the share of the interactive task between 0.01 and

0.2.

Figure 5.9 shows the result of our experiment with 0.1 free shares. In this

experiment Tyche shifts shares from the free capacity to the interactive task using

interactive share shifting to reduce its latency. The graphs at top show the results

without share shifting. Figure 5.9(a) shows the average latency, with error bars,

experienced by the interactive task; the x-axis is the share of the interactive task,

and the y-axis shows the average latency in log scale. We note two things about

this graph. First, a share of 0.11 or greater for the interactive task produces an

average latency of about 10ms; however, the latency grows exponentially as the

share gets smaller than this value. To achieve a target average latency of 100ms

(which approximates the limitations of human perception [56]) then the share must

be at least 0.08. Second, the minimum latency measured in all tests is about 6ms,

which is the execution time of the task. The interactive task is idle between bursts,

and so the first quantum in a burst often runs immediately; subsequent quanta

in the burst may experience successively higher latencies. For measured latencies

above 3 seconds—the inter-burst period—a new burst of events arrives before the

previous burst has finished processing.

Figure 5.9(b) shows the CPU-bound task receiving essentially the same CPU

allocation, in excess of its share, regardless of the share of the interactive task. This

is because the actual requirements of the interactive task are so small (60ms every

3.5 seconds, or only about 1.7% of the CPU capacity). In other words, the task only
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(b) Other tasks
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(c) Interactive task with shifting
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(d) Other tasks with shifting

Figure 5.9: Interactive latency with 0.1 free shares
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(c) Interactive task with shifting
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(d) Other tasks with shifting

Figure 5.10: Interactive latency with 0 free shares, α = 0.1
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uses less than 2% of the CPU, but without share shifting it must be given a share

of at least 8% to produce acceptable latency. The graph also shows the JPEG task

meeting all deadlines as usual.

The same experiment, with share shifting enabled, is shown in the bottom graphs

of Figure 5.9. Figure 5.9(c) shows that, regardless of the share value given to the

task, share shifting can produce an average latency of less than 100ms—in fact,

the maximum latency observed for any share assignment is less than this value.

Figure 5.9(d) resembles the one above it, showing that the competing tasks are

not adversely affected. In this experiment, share shifting drops the share required

to produce a target average latency of 100ms from 0.08 to 0.01, or increases the

interactive task’s robustness to choice of share by 88%.

Similarly, Figure 5.10 shows the result with 0 free shares. As in the MPEG

experiments, the interactive and JPEG tasks are High priority and the CPU-bound

task is Low priority. As before, the top graphs show that the latency grows ex-

ponentially for smaller shares (this time, less than 0.12) and 0.09 is the minimum

share that can provide an average latency of 100ms. The bottom graphs show that

allowing share shifting from the CPU-bound task once more reduces the average

latency to below 100ms for all share values; in this case, the increase in robustness

for that target average latency is 89%. The graphs on the right side show that

neither the CPU-bound or JPEG task appears to be affected by the shift.

We conclude from these experiments that share shifting can be effective in re-

ducing the latency of interactive applications that are able to inform Tyche of their

execution requirements.
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5.8 Comparison to Other Approaches

We have not yet directly evaluated Tyche against other CPU schedulers. However,

in this section we argue that Tyche improves upon several other approaches, namely

EEVDF [61], SMART [45, 46], and BVT [17].

First, the proportional share scheduler presented in Section 4.3.1 essentially im-

plements EEVDF, and so the experiments of this chapter can be seen as measuring

the value that Tyche’s share shifting mechanism adds to EEVDF. These experiments

establish that share shifting can dramatically improve the ability of an important

multimedia application to meet deadlines, and an important interactive application

to achieve low latency. As argued in Chapter 1, a feedback controller responsible

for making global resource decisions may not immediately adjust shares in line with

user goals and application needs. Adding new mechanisms to proportional share

schedulers, such as share shifting, offers one way to address this problem.

Second, we consider the proportional sharing and deadline reordering features of

SMART. SMART provides each application with its share by ordering the runqueue

by increasing VFT, but it may change the execution order of real-time tasks with

time constraints to meet more deadlines. SMART only reorders time constraints

that are adjacent to one another on the runqueue: when a task with a time constraint

reaches the front of the queue, SMART scans down the queue to find the first batch

task (i.e., without a time constraint). Then it reorders the time constraints of tasks

that are in front of the batch task using Earliest Deadline First, if doing so will

produce a feasible schedule. We would expect the reordering to be of value when

there are many real-time (multimedia and interactive) tasks in the system, and to

have no effect when there is only a single real-time task. In contrast, we believe that

share shifting can improve the quality of any number of multimedia or interactive

tasks, subject to the amounts of free and Low priority shares available for shifting.
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SMART’s EDF reordering of time constraints loosely resembles share shifting in

Tyche. If a task would miss its deadline without SMART’s reordering, this means

that its share is too small relative to its deadline. Reordering by deadline allows the

task to move up in the runqueue, essentially cutting in front of some other real-time

tasks. Since the tasks were originally ordered by their VFTs, this means that either

the other tasks have shares that are larger than needed to meet their deadlines (i.e.,

the task that moves up shifts away their unneeded shares) or there is some slack in

the schedule (i.e., the task that moves up shifts shares that are free or belong to

idle tasks). Since reordering is somewhat similar to share shifting, we would expect

SMART to provide some robustness to choice of share for real-time applications.

However, in an overload situation where real-time tasks do not have conservative

shares and there are no free shares available, we would expect SMART to provide

less robustness than Tyche. In this case, SMART would have fewer opportunities

to provide better quality through deadline reordering, because it cannot shift shares

away from unimportant batch tasks like Tyche does.

Third, BVT is a proportional share scheduler that allows tasks to “warp”, im-

proving their dispatch latency by dynamically borrowing cycles from other tasks.

On the surface, BVT sounds much like Tyche since they both manipulate virtual

time to try to improve the quality of real-time tasks. Warping subtracts a constant

(the warp factor) from the virtual timestamp of a task, allowing it to move up in the

runqueue and potentially to execute earlier. Warping is triggered by issuing a sys-

tem call, implying that the application or the feedback controller must decide that

the application needs to improve its latency. A general objection to BVT is that its

designers do not seem to adequately explore using the knobs already provided by

proportional share schedulers to change latency. In other words, if an application

or feedback controller must take some action to warp a task, why not increase its

share instead? Chapter 3 describes in detail the relationship between a task’s share
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and the real-time promises that the system makes to it. In contrast to BVT, the

Tyche scheduler can automatically shift shares to improve the latency of interactive

tasks and meet the deadlines of multimedia tasks.

We would expect BVT’s warping mechanism to provide real-time application

with some robustness to choice of share, since warping a task may allow it to run

earlier. However, the robustness benefit of BVT is likely to be minor for three

reasons. First, warping a real-time task may not actually help it to meet more

deadlines or achieve better latency. Warping simply subtracts a constant from the

task’s VFT. A warped task will only be dispatched sooner if it actually moves up in

the runqueue, and whether a particular warp factor will allow it to do so depends

on the virtual timestamps of the tasks ahead of it. Tyche’s share shifting is used

to improve the real-time promises made to applications, and always has an effect

when there are sufficient shares to shift. Second, warping a task works by allowing

it to cut in line in front of other tasks. It appears that a warping task could cause

another important and well-behaved task to miss deadlines, which may actually

reduce the important task’s quality and hence its robustness. By design, Tyche

avoids interference between important tasks. Third, the long-term goal of BVT is

to provide an application with its share, and cycles that are borrowed by warping

are eventually paid back. It seems that warping could be used to cover temporary

usage peaks, for example when decoding the I frames in an MPEG video. However,

warping is unlikely to help an application whose share is simply too small, and this is

precisely the situation that the robustness to choice of share metric tries to capture.

We believe future evaluations will show that Tyche provides real-time applications

with more robustness to choice of share than other existing approaches.
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5.9 Discussion

We suspect that our robustness metric is a pessimistic measure of the value of

share shifting in practice. In the graphs presented in the multimedia experiments

of Section 5.6, the effect of share shifting is to move the MPEG decoder task’s

deadline curve to the left, meaning that the same number of deadlines can be met

with a lower share value. That is, given a share for the MPEG decoder that is

insufficient to meet the target level of deadlines without share shifting, but which

is otherwise random, the robustness metric represents the probability that enabling

share shifting will allow the target level of deadlines to be met.

In a real system, the share selection procedure would probably not be random;

if the share selector can choose a share for the MPEG decoder that comes close

to being sufficient to meet the decoder’s deadline target, then share shifting can

provide even greater value. For example, suppose that the user will be satisfied if

the MPEG decoder meets 95% of deadlines, and that share shifting increases the

decoder’s robustness to its share by 12% at that quality level; also, suppose that the

share selection algorithm can always choose a share for the decoder within 10% of

that needed to meet the user’s quality target. In this example, Tyche would enable

the application to always meet its quality target, since its chosen share always falls

within the area that the curve shifts. We have already demonstrated in [8] that the

CPU cycles required to decode individual MPEG frames can usually be predicted

to within 10% of the actual value; it is reasonable to believe that an advanced share

selection algorithm could use such information to choose shares that are close to

optimal, in which case share shifting would provide greater benefits than expressed

by our metric.

Finally, a key question for any scientific experiment is, to what extent can its

results be generalized to scenarios other than the specific ones measured? The
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experiments contained in this chapter are very limited in scope. However, they

main purpose is to confirm the correctness of the theoretical framework presented

in Chapters 3 and 4; this theory provides a structure that applies to all workloads

and scheduling parameters, and not just the individual scenarios that we have mea-

sured. Therefore we have good reason to believe that the benefits of share shifting

demonstrated by these experiments will generalize to real multimedia workloads

running on real systems; the question, then, is simply one of the magnitude of this

benefit. We leave the answer to this question as future work.
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Chapter 6

Conclusions

A multimedia PC must support a diverse mix of multimedia, interactive, and batch

applications. Firm real-time multimedia systems, composed of reservation-based

CPU schedulers, adaptive multimedia applications, and sophisticated feedback con-

trollers, offer a promising solution to this problem. In this dissertation we ask

whether these components, given the current state-of-the-art, are sufficient to pro-

vide the user with a good experience. We conclude that such multimedia systems

represent an advance over what is commonly available today; however, they may

sometimes fall short in delivering application quality that is in line with the user’s

goals, particularly in overload. We then describe the Tyche CPU scheduler, a mod-

ified proportional share CPU scheduler that provides reservations and at the same

time incorporates the intelligence to make fine-grained, global resource decisions to

provide better quality to applications that are important to the user. We believe

that Tyche can provide a better user experience than other reservation-based CPU

schedulers in the multimedia systems of the future. In this chapter we summa-

rize the contributions made by this dissertation, and conclude by discussing future

research directions.
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6.1 Summary of Contributions

This dissertation makes four contributions: the Tyche CPU scheduler itself, and

the ideas that led to its conception, analysis, and evaluation. We summarize each

below.

In Chapter 1, our first contribution is to comprehensively characterize the mul-

timedia scheduling problem for firm real-time systems. Other research has focused

on the specific problems of building share-based CPU schedulers, adaptive applica-

tions, and feedback controllers that select application shares. We take an end-to-end

approach and ask, how do all of these components cooperate to produce a useful

multimedia system? This approach reveals a central problem for the user of such a

system: assigning shares to applications so that they provide him with good value.

We show that the problem of choosing optimal shares is NP-hard, even with perfect

information about each application’s CPU requirements and how these requirements

map onto specific quantities of user value; in practice, we expect this information to

often be stale or incomplete. Because the share selection problem is hard, we argue

that even a sophisticated feedback controller may sometimes assign shares to appli-

cations that are inadequate to meet the user’s objectives. We assert that it is the

job of the CPU scheduler to try to improve the user’s overall experience when this

happens. We simplify the problem and make it more tractable by asserting several

Principles of User Benefit that provide specific guidelines by which a multimedia

CPU scheduler can increase the system’s benefit to the user.

In Chapters 3 and 4 we derive a novel multimedia CPU scheduler, called Tyche,

by applying a general technique—modifying a share-based scheduler to better sup-

port multimedia and interactive applications—to the firm real-time domain. This

technique was previously used to create such soft real-time multimedia CPU sched-

ulers as SMART and BVT. Shifting the technique to the firm real-time domain re-

143



quires an analysis of the real-time properties of the resulting scheduling algorithm.

We accomplish this in three steps. First, in Chapter 3 we extend the mathematical

model that serves as the foundation of share-based algorithms such as Weighted Fair

Queuing; second, we prove the real-time properties of any scheduler that tracks this

model using virtual time. Third, in chapter 4 we describe Tyche’s behavior within

the extended mathematical model. We note that this analytic framework is quite

general, and could be used to create firm real-time scheduling algorithms other than

Tyche.

In Chapter 5 we propose a new evaluation method for firm real-time multimedia

schedulers such as Tyche. This method uses the new metric of robustness to choice

of share to estimate the increased value resulting from adding new mechanisms to a

share-based scheduler. The robustness metric accounts for the difficulty of the share

selection problem by evaluating the algorithm across a range of shares; it represents

the ultimate goal of providing the user with more value through quantifying the

share values required to provide various application quality levels. The result is

that we can provide a rough answer to the following question: “Given that the

user is unhappy with a certain application’s quality because it has been assigned

a sub-optimal share value, what is the chance that activating the new mechanism

(in our case, share shifting) can make him happy?” We believe that this is the

primary question that must be answered by any evaluation of a modified share-

based scheduler.

Our primary contribution is the Tyche CPU scheduler itself. As demonstrated in

Chapter 5, Tyche’s share shifting mechanism adds value to a firm real-time system

by increasing the robustness of multimedia and interactive tasks to their share

values at all quality levels. The share shifting mechanism is activated in accordance

with the Principles of User Benefit; specifically, any task can shift free shares to

meet deadlines or reduce its latency, and High priority tasks can shift a portion

144



of the Low priority shares determined by the system parameter α. Though our

experiments are performed on synthetic workloads, our analysis of Tyche’s real-time

behavior indicates that its benefits can extend to a wide variety of real workloads

and systems. Our qualitative comparison between Tyche and other proposed CPU

schedulers such as SMART [45, 46] and BVT [17] argues that Tyche offers better

robustness to choice of share than these alternatives.

6.2 Future Research

Share shifting is a form of cooperation between the CPU scheduler and applications,

with the goal of satisfying the user. With our metric of robustness to choice of share,

we attempt to capture the user’s subjective experience by estimating the probability

that enabling share shifting will allow an application to meet a target quality level.

However, we do not claim that these experiments are sufficient to show that Tyche

can always provide the user with a better experience. The next step in the evaluation

is to run Tyche on multimedia PCs with real users and a real workloads. To realize

the full benefits of share shifting, this step requires instrumenting multimedia and

interactive applications to be resource-aware, as was done by Jones et al. to study

the benefits of Rialto [29]. Real-time applications must also be modified to give

Tyche hints about what type of share shifting to use. Finally, the system can

employ a feedback controller that uses information from the user, applications, and

system to set application shares.

Combining these components in a real system would pave the way for a more

subjective evaluation of Tyche. A potential study could employ several groups of

multimedia PC users, each given the same user interface, feedback controller, and

applications. The PCs of one group of users would run the Tyche CPU scheduler,

while others would employ other modified proportional share schedulers such as
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SMART [45, 46] or BVT [17]; the control group would be given a standard propor-

tional share scheduler like EEVDF [61]. At the end of the experimental period, the

users would be given a survey which asked them to rate their experiences. By com-

paring the Tyche and EEVDF groups, we could determine if Tyche’s share shifting

mechanism adds real value to a proportional sharing scheduler. Comparing Tyche

with SMART or BVT would reveal whether Tyche gives the user a better experience

than other approaches. User studies may also indicate whether the robustness to

choice of share metric is really meaningful for such systems.

Another interesting question that a user study could address is whether the

Tyche CPU scheduler contains enough intelligence to dispense with a feedback con-

troller. Tyche is able to make global resource decisions based on user importance,

just as a feedback controller might. Therefore, with Tyche’s assistance, perhaps a

well-designed GUI for changing shares (e.g., an interface consisting of sliders and

buttons for locking them, such as is used by many computer games that involve

resource allocation) could take the place of the controller. A study could compare

the experience of users employing the GUI with EEVDF, the GUI with Tyche, a

feedback controller with EEVDF, and a feedback controller with Tyche. The ex-

perience of the GUI+EEVDF group would tell us whether our intuition that share

selection intelligence must be built into the system is correct. Then the experiences

of the other three groups would indicate whether the intelligence should be placed

in the CPU scheduler (GUI+Tyche), the feedback controller (feedback+EEVDF),

or split between both (feedback+Tyche).

As more experience is gained in the resource requirements of multimedia appli-

cations, it may turn out that certain applications can benefit from different types of

resource reservations than the CPU fractions offered by proportional sharing. Our

extension of the mathematical GPS model in Chapter 3 implies that virtual time

can be used to approximate CPU reservations of any form, as long as they can be
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mathematically expressed in the model. For example, an application that requires

a large fraction of the CPU at some times, and a small fraction at others, may be

able to reserve a sine wave as its CPU profile. Providing reservations other than

simple CPU fractions may help increase the overall system utilization; applications

could obtain resource profiles that more closely conform to their actual resource

needs, rather than CPU fractions based on the worst case (e.g., the peaks of the

sine wave). This may allow a system to accommodate more applications with the

same amount of resources.

Finally, PlanetLab [7, 49] may provide another testing ground, distinct from mul-

timedia PCs, for the ideas and mechanisms of Tyche. PlanetLab is a geographically

distributed overlay platform designed to support the deployment and evaluation of

planetary-scale network services. As of August 2004, PlanetLab includes over 400

machines spanning 181 sites and 25 countries, and has supported over 450 research

projects. Developers using PlanetLab create slices in which to run their services

or experiments; each slice comprises a set of virtual machines distributed across

specific PlanetLab nodes. These virtual machines help prevent interference among

different slices by providing namespace and performance isolation between them.

An example of namespace isolation is that each slice has its own view of the local

root file system and can install its own RPM packages. Currently, performance iso-

lation takes the form of share-based scheduling of the CPU and outgoing network

bandwidth.

The Proper service [43] was developed to allow slices that are cooperating with

one another to “poke holes” in the namespace isolation enforced by the virtual ma-

chines, for example, to share files. Share shifting may allow similar holes to be poked

in the performance isolation barrier enforced by proportional share scheduling, in

cases where one slice is performing a service on behalf of another. For instance, if

a routing overlay in one slice is forwarding packets belonging to a DHT running in
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another slice, perhaps some of the DHT’s shares could be temporarily shifted to

the routing overlay in order to reduce the forwarding latency of its packets. This

would require extending Tyche beyond its current priority scheme, to one where

tasks are associated into groups and share shifting is only permitted between tasks

in a group. Even with the current High and Low priority levels, Tyche could be

used in PlanetLab to provide better scheduling latency to network measurement

experiments by marking them High priority. PlanetLab may provide us with an

opportunity to move share shifting beyond multimedia, by showing how it can be

relevant to a rapidly emerging class of distributed systems and applications.
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